Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
3 Biotech ; 13(10): 335, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37693637

ABSTRACT

One of the major environmental concerns today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Crude oil is a complex mixture of hydrocarbons like alkanes, naphthene and polycyclic aromatic hydrocarbons (PAHs). PAHs are known to be highly toxic to humans and animals due to their carcinogenic and mutagenic effects. PAHs are environmentally recalcitrant due to their hydrophobicity which makes them difficult to degrade, thus making them persistent environmental contaminants. The mechanical and chemical methods in practice currently to remove hydrocarbon contaminants have limited effectiveness and are expensive. Bioremediation is a cost-effective technology for treating hydrocarbon-contaminated sites as it results in the complete mineralisation of the pollutant. This study demonstrates the degradation of crude oil and associated PAHs using ten fungal cultures isolated from the aquatic environment. The current study reported a 98.6% and 92.9% reduction in total PAHs in crude oil by Fusarium species, i.e. isolate NIOSN-T4 and NIOSN-T5, respectively. The fungal isolate, NIOSN-T4, identified as Fusarium equiseti, showed maximum PAH degradation efficiency of LMW PAHs 97.8%. NIOSN-M126, identified as Penicillium citrinum, exhibited a 100% removal of HMW PAHs. Microorganisms possess an untapped potential for various applications in biotechnology, and the current study demonstrated the potential of marine fungi for use in the bioremediation of xenobiotic hydrocarbons in the environment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03753-2.

2.
Metallomics ; 12(7): 1083-1093, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32301940

ABSTRACT

Copper is one of the essential trace dietary minerals for all living organisms, but is potentially toxic at higher concentrations, mainly due to the redox reactions in its transition state. Tolerance of microbes towards copper is primarily attributed to chelation and biosorption. In this study, marine-derived filamentous fungi were evaluated for their ability to remove Cu(ii) from a culture medium. Further, the cellular response of a select isolate to salinity stress (0, 35 and 100 PSU) and Cu(ii) stress (0, 100, and 500 ppm) was studied using the peptide mass fingerprinting technique, which revealed expression of 919 proteins, of which 55 proteins were commonly expressed across all conditions. Housekeeping proteins such as citrate synthase, pyruvate carboxylase, ribosomal proteins, ATP synthases, and more were expressed across all conditions. Reactive oxygen species scavenging proteins such as glutaredoxin, mitochondrial peroxiredoxins and thioredoxins were expressed under Cu(ii) and salinity stresses individually as well as in combination. Up-regulation of glutaredoxin under Cu(ii) stress with fold change values of 18.3 and 13.9 under 100 ppm and 500 ppm of Cu(ii) indicated active scavenging of free radicals to combat oxidative damage. The common mechanisms reported were enzymatic scavenging of free radicals, activation of DNA damage and repair proteins and probable intracellular metal chelation. This indicated multiple stress mechanisms employed by the isolate to combat the singular and synergistic effects of Cu(ii) and salinity stress.


Subject(s)
Penicillium chrysogenum/metabolism , Citrate (si)-Synthase/metabolism , Copper/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Oxidation-Reduction , Pyruvate Carboxylase/metabolism , Reactive Oxygen Species/metabolism , Ribosomal Proteins/metabolism
3.
Indian J Microbiol ; 59(1): 100-104, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30728637

ABSTRACT

Filamentous fungi are ubiquitous eukaryotes having chitin as a major constituent of the cell wall. Chitin is tough to lyse due to which the intracellular fungal proteins are not readily accessible. The problem is further enhanced when the biomass to be analyzed for protein studies is too little due to the extreme experimental parameters under consideration such as increased or lowered pH, temperature, hydrostatic pressure, nutrients, etc. The method described here is capable of obtaining proteins from minuscule quantities of biomass (~5 mg lyophilized biomass). In this study, different lysing conditions and varied composition of extraction buffers were tried to obtain maximum protein of high quality. Lysis with zirconium beads in a combination buffer system (Tris-MgCl2 buffer, urea buffer I and urea buffer II) was best for extracting proteins from the fungal isolates used. The protocol described here provides for a simple and quick method for extraction of high-quality proteins from very less biomass that could be extended to other tough to lyse biological material also.

4.
Indian J Microbiol ; 58(3): 360-371, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30013281

ABSTRACT

Abiotic factors can cause substantial limitation of growth of microbes. A combination of salinity stress along with chromium (Cr+6), one of the carcinogen, can pose an immediate threat to any living system. To understand how salinity (0, 35 and 100 PSU) and Cr(VI) stress (0, 100 and 500 ppm), affects cells at the molecular level, the cellular response of Purpureocillium lilacinum to the individual as well the combination of both the stresses were studied by peptide mass fingerprinting technique. The study reports 1412 proteins, of which 105 proteins were found to be present across all conditions. The most prevalent functional class expressed was genetic information processing. Proteins involved in free radical scavenging were up-regulated in response to the oxidative stress generated due to both the applied stresses while expression of metal chelators, transporters systems, indicated towards multiple stress tolerance mechanisms to combat synergistic effects of salt and Cr stress.

5.
Indian J Microbiol ; 58(2): 182-192, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29651177

ABSTRACT

Chromium (Cr) released from industrial units such as tanneries, textile and electroplating industries is detrimental to the surrounding ecosystems and human health. The focus of the present study was to check the Cr(VI) removal efficiency by marine-derived fungi from liquid broth. Amongst the three Cr(VI) tolerant isolates, #NIOSN-SK56-S19 (Aspergillus sydowii) showed Cr-removal efficiency of 0.01 mg Cr mg-1 biomass resulting in 26% abatement of total Cr with just 2.8 mg of biomass produced during the growth in 300 ppm Cr(VI). Scanning Electron Microscopy revealed aggregation of mycelial biomass with exopolysaccharide, while Electron Dispersive Spectroscopy showed the presence of Cr2O3 inside the biomass indicating presence of active Cr(VI) removal mechanisms. This was further supported when the Cr(VI) removal was monitored using DPC (1,5-diphenylcarbazide) method. The results of this study point to the potential of marine-derived fungal isolates for Cr(VI) removal.

6.
3 Biotech ; 8(1): 21, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29276659

ABSTRACT

Ten fungal isolates with an ability to degrade crude oil were isolated from select marine substrates, such as mangrove sediments, Arabian Sea sediments, and tarballs. Out of the ten isolates, six belonged to Aspergillus, two to Fusarium and one each to Penicillium and Acremonium as identified using ITS rDNA sequencing. The selected ten fungal isolates were found to degrade the long-chain n-alkanes as opposed to short-chain n-alkanes from the crude oil. Mangrove fungus #NIOSN-M126 (Penicillium citrinum) was found to be highly efficient in biodegradation of crude oil, reducing the total crude oil content by 77% and the individual n-alkane fraction by an average of 95.37%, indicating it to be a potential candidate for the development into a bioremediation agent.

SELECTION OF CITATIONS
SEARCH DETAIL