Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 38(1): 108-114, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362158

ABSTRACT

The channeling of laser pulses in waveguides filled with a rare plasma is one of the promising techniques of laser wakefield acceleration. A solid-state capillary can precisely guide tightly focused pulses. Regardless of the material of the capillary, its walls behave like a plasma under the influence of a high-intensity laser pulse. Therefore, the waveguide modes in the capillaries have a universal structure, which depends only on the shape of the cross-section. Due to the large ratio of the capillary radius to the laser wavelength, the modes in circular capillaries differ from classical TE and TM modes. We consider the structure of capillary modes in a circular capillary, calculate the attenuation rates, discuss the mode expansion of the incident pulse using minimal simplifications, and analyze the accuracy of commonly used approximations. The attenuation length for such modes is two orders of magnitude longer than that obtained from the classical formula, and the incident pulse of the proper radius can transfer up to 98% of its initial energy to the fundamental mode. However, finding eigenmodes in capillaries of arbitrary cross-sections is a complex mathematical problem that remains to be solved.

2.
Nat Commun ; 11(1): 4753, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32958741

ABSTRACT

Metre-scale plasma wakefield accelerators have imparted energy gain approaching 10 gigaelectronvolts to single nano-Coulomb electron bunches. To reach useful average currents, however, the enormous energy density that the driver deposits into the wake must be removed efficiently between shots. Yet mechanisms by which wakes dissipate their energy into surrounding plasma remain poorly understood. Here, we report picosecond-time-resolved, grazing-angle optical shadowgraphic measurements and large-scale particle-in-cell simulations of ion channels emerging from broken wakes that electron bunches from the SLAC linac generate in tenuous lithium plasma. Measurements show the channel boundary expands radially at 1 million metres-per-second for over a nanosecond. Simulations show that ions and electrons that the original wake propels outward, carrying 90 percent of its energy, drive this expansion by impact-ionizing surrounding neutral lithium. The results provide a basis for understanding global thermodynamics of multi-GeV plasma accelerators, which underlie their viability for applications demanding high average beam current.

4.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180418, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230571

ABSTRACT

In this article, we briefly summarize the experiments performed during the first run of the Advanced Wakefield Experiment, AWAKE, at CERN (European Organization for Nuclear Research). The final goal of AWAKE Run 1 (2013-2018) was to demonstrate that 10-20 MeV electrons can be accelerated to GeV energies in a plasma wakefield driven by a highly relativistic self-modulated proton bunch. We describe the experiment, outline the measurement concept and present first results. Last, we outline our plans for the future. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

5.
Phys Rev Lett ; 112(19): 194801, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24877943

ABSTRACT

A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, most of its energy is transferred to plasma electrons. The electrons gain substantial transverse momentum and escape the plasma radially, which gives rise to a strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(4 Pt 2): 046405, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15169104

ABSTRACT

A wide region of beam parameters is numerically scanned and the dependence of wakefield properties on the beam length and current is clarified for the blowout regime of beam-plasma interaction. The main regimes of the plasma response are found, which qualitatively differ in the plasma behavior. To characterize the efficiency of the energy exchange between the beam and the plasma, the energy flux through the comoving window is introduced. Scalings of the energy flux for the linear plasma response and the main blowout regimes are studied. The most efficient energy transfer occurs in the so-called "strong beam" regime of interaction. For this regime, analytical approximations for various aspects of the plasma response are obtained.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(3 Pt 2): 036503, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11308781

ABSTRACT

We obtain necessary conditions for the plasma compensation to work in muon colliders. To this end, we analyze the suppression of beam fields by the plasma, collisional diffusion of the return plasma current, possible beam filamentation, and dynamics of plasma ions. We show that a good compensation requires very short beams and allows little freedom in choice of the plasma density.

SELECTION OF CITATIONS
SEARCH DETAIL
...