Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(3): 3882-3890, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770978

ABSTRACT

We present an in-line metrology solution for dimensional characterization of roll-to-roll imprinted nanostructures. The solution is based on a scatterometric analysis of optical data from a hyperspectral camera deployed at a production facility, where nanostructures are produced at speeds of 10m/min. The system combines the ease of use of a real-space imaging system with the spectral information used in scatterometry. We present nanoscale dimensional measurements on one-dimensional line gratings with various periods and orientations. The depths of the produced structures are accurately characterized with uncertainties on the scale of a few nanometers. The hyperspectral imaging capabilities of the system can also be used to avoid vibrational effects.

2.
Opt Lett ; 44(22): 5505-5508, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730094

ABSTRACT

Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 µm, the total transmission of a 15 µm core diameter PCF was improved from ∼53% to ∼74% by nanoimprinting of AR structures on both input and output facets of the fiber. Through a combined effect of reduced reflection and redshifting of the spectrum to 5 µm, the relative transmission of light >3.5 µm in the same fiber was increased by 60.2%. Further extension of the spectrum to 8 µm was achieved using tapered fibers. The spectral broadening dynamics and output power were investigated using different taper parameters and pulse repetition rates.

3.
Opt Lett ; 44(17): 4383-4386, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465408

ABSTRACT

We report on the progress towards developing a new method for fabricating more efficient, broadband antireflective (AR) moth-eye structures in As2Se3 via a direct nanoimprinting technique. Thermal reflow is used during mold fabrication to reshape a conventional deep-ultraviolet lithography in order to promote a pattern transfer of "secant ogive"-like moth-eye structures. Once replicated, structures modified by reflow displayed greater AR efficiency compared to structures replicated by a conventional mold, achieving the highest spectrum-averaged transmittance improvement of 12.36% from 3.3 to 12 µm.

4.
Nat Commun ; 9(1): 659, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440635

ABSTRACT

Conductance quantization is the quintessential feature of electronic transport in non-interacting mesoscopic systems. This phenomenon is observed in quasi one-dimensional conductors at zero magnetic field B, and the formation of edge states at finite magnetic fields results in wider conductance plateaus within the quantum Hall regime. Electrostatic interactions can change this picture qualitatively. At finite B, screening mechanisms in narrow, gated ballistic conductors are predicted to give rise to an increase in conductance and a suppression of quantization due to the appearance of additional conduction channels. Despite being a universal effect, this regime has proven experimentally elusive because of difficulties in realizing one-dimensional systems with sufficiently hard-walled, disorder-free confinement. Here, we experimentally demonstrate the suppression of conductance quantization within the quantum Hall regime for graphene nanoconstrictions with low edge roughness. Our findings may have profound impact on fundamental studies of quantum transport in finite-size, two-dimensional crystals with low disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...