Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38894708

ABSTRACT

The Segment Anything Model (SAM) is a recently developed all-range foundation model for image segmentation. It can use sparse manual prompts such as bounding boxes to generate pixel-level segmentation in natural images but struggles in medical images such as low-contrast, noisy ultrasound images. We propose a refined test-phase prompt augmentation technique designed to improve SAM's performance in medical image segmentation. The method couples multi-box prompt augmentation and an aleatoric uncertainty-based false-negative (FN) and false-positive (FP) correction (FNPC) strategy. We evaluate the method on two ultrasound datasets and show improvement in SAM's performance and robustness to inaccurate prompts, without the necessity for further training or tuning. Moreover, we present the Single-Slice-to-Volume (SS2V) method, enabling 3D pixel-level segmentation using only the bounding box annotation from a single 2D slice. Our results allow efficient use of SAM in even noisy, low-contrast medical images. The source code has been released at: https://github.com/MedICL-VU/FNPC-SAM.

2.
IEEE Trans Med Imaging ; 42(10): 2832-2841, 2023 10.
Article in English | MEDLINE | ID: mdl-37037256

ABSTRACT

A common problem with segmentation of medical images using neural networks is the difficulty to obtain a significant number of pixel-level annotated data for training. To address this issue, we proposed a semi-supervised segmentation network based on contrastive learning. In contrast to the previous state-of-the-art, we introduce Min-Max Similarity (MMS), a contrastive learning form of dual-view training by employing classifiers and projectors to build all-negative, and positive and negative feature pairs, respectively, to formulate the learning as solving a MMS problem. The all-negative pairs are used to supervise the networks learning from different views and to capture general features, and the consistency of unlabeled predictions is measured by pixel-wise contrastive loss between positive and negative pairs. To quantitatively and qualitatively evaluate our proposed method, we test it on four public endoscopy surgical tool segmentation datasets and one cochlear implant surgery dataset, which we manually annotated. Results indicate that our proposed method consistently outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms. And our semi-supervised segmentation algorithm can successfully recognize unknown surgical tools and provide good predictions. Also, our MMS approach could achieve inference speeds of about 40 frames per second (fps) and is suitable to deal with the real-time video segmentation.


Subject(s)
Deep Learning , Algorithms , Neural Networks, Computer , Supervised Machine Learning , Image Processing, Computer-Assisted
3.
J Med Imaging (Bellingham) ; 10(1): 014005, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36820234

ABSTRACT

Purpose: Segmenting medical images accurately and reliably is important for disease diagnosis and treatment. It is a challenging task because of the wide variety of objects' sizes, shapes, and scanning modalities. Recently, many convolutional neural networks have been designed for segmentation tasks and have achieved great success. Few studies, however, have fully considered the sizes of objects; thus, most demonstrate poor performance for small object segmentation. This can have a significant impact on the early detection of diseases. Approach: We propose a context axial reverse attention network (CaraNet) to improve the segmentation performance on small objects compared with several recent state-of-the-art models. CaraNet applies axial reserve attention and channel-wise feature pyramid modules to dig the feature information of small medical objects. We evaluate our model by six different measurement metrics. Results: We test our CaraNet on segmentation datasets for brain tumor (BraTS 2018) and polyp (Kvasir-SEG, CVC-ColonDB, CVC-ClinicDB, CVC-300, and ETIS-LaribPolypDB). Our CaraNet achieves the top-rank mean Dice segmentation accuracy, and results show a distinct advantage of CaraNet in the segmentation of small medical objects. Conclusions: We proposed CaraNet to segment small medical objects and outperform state-of-the-art methods.

4.
Comput Biol Med ; 154: 106579, 2023 03.
Article in English | MEDLINE | ID: mdl-36706569

ABSTRACT

-Deep learning techniques are proving instrumental in identifying, classifying, and quantifying patterns in medical images. Segmentation is one of the important applications in medical image analysis. The U-Net has become the predominant deep-learning approach to medical image segmentation tasks. Existing U-Net based models have limitations in several respects, however, including: the requirement for millions of parameters in the U-Net, which consumes considerable computational resources and memory; the lack of global information; and incomplete segmentation in difficult cases. To remove some of those limitations, we built on our previous work and applied two modifications to improve the U-Net model: 1) we designed and added the dilated channel-wise CNN module and 2) we simplified the U-shape network. We then proposed a novel light-weight architecture, the Channel-wise Feature Pyramid Network for Medicine (CFPNet-M). To evaluate our method, we selected five datasets from different imaging modalities: thermography, electron microscopy, endoscopy, dermoscopy, and digital retinal images. We compared its performance with several models having a variety of complexities. We used the Tanimoto similarity instead of the Jaccard index for gray-level image comparisons. The CFPNet-M achieves segmentation results on all five medical datasets that are comparable to existing methods, yet require only 8.8 MB memory, and just 0.65 million parameters, which is about 2% of U-Net. Unlike other deep-learning segmentation methods, this new approach is suitable for real-time application: its inference speed can reach 80 frames per second when implemented on a single RTX 2070Ti GPU with an input image size of 256 × 192 pixels.


Subject(s)
Medicine , Thermography , Image Processing, Computer-Assisted
5.
Simul Synth Med Imaging ; 14288: 11-20, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38560492

ABSTRACT

Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-based hearing loss. Several groups have proposed computational models of the cochlea in order to study the neural activation patterns in response to CI stimulation. However, most of the current implementations either rely on high-resolution histological images that cannot be customized for CI users or CT images that lack the spatial resolution to show cochlear structures. In this work, we propose to use a deep learning-based method to obtain µCT level tissue labels using patient CT images. Experiments showed that the proposed super-resolution segmentation architecture achieved very good performance on the inner-ear tissue segmentation. Our best-performing model (0.871) outperformed the UNet (0.746), VNet (0.853), nnUNet (0.861), TransUNet (0.848), and SRGAN (0.780) in terms of mean dice score.

SELECTION OF CITATIONS
SEARCH DETAIL
...