Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116536, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833983

ABSTRACT

The anomalies of cadmium (Cd) in karst region pose a severe threat to plant growth and development. In this study, the responses of Rhododendron decorum to Cd stress were investigated at physiological, molecular, and endophytic microbial levels, and the potential correlation among these responses was assessed. The Cd stress impeded R. decorum growth and led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as enhanced superoxide dismutase (SOD) and catalase (CAT) activities. Meanwhile, Cd stress increased the Cd (up to 80 times compared to the control), sodium (Na), aluminum (Al), and zinc (Zn) contents, while decreased the magnesium (Mg) and manganese (Mn) contents in R. decorum leaves. Transcriptome suggested that Cd significantly regulated the pathways including "protein repair", "hormone-mediated signaling pathway", and "ATP-binding cassette (ABC) transporters". Additionally, q-PCR analysis showed that Cd stress significantly up-regulated the expressions of ABCB19-like and pleiotropic drug resistance, while down-regulated the expressions of indole-3-acetic acid-amido synthetase and cytokinin dehydrogenase. The Cd stress influenced the composition of endophytic microbial communities in R. decorum leaves and enhanced the interspecific bacterial associations. Furthermore, the bacterial genera Achromobacter, Aureimonas and fungal genus Vishniacozyma exhibited a high degree of connectivity with other nodes in networks constructed by the metal element contents, differentially expressed genes (DEGs), and microbial communities, respectively. These findings provide a comprehensive insight into the response of R. decorum to Cd-induced stress, which might facilitate the breeding of the Cd-tolerant R. decorum.


Subject(s)
Cadmium , Microbiota , Rhododendron , Transcriptome , Cadmium/toxicity , Rhododendron/microbiology , Rhododendron/genetics , Transcriptome/drug effects , Microbiota/drug effects , Plant Leaves/drug effects , Soil Pollutants/toxicity , Stress, Physiological/drug effects , Malondialdehyde/metabolism , Hydrogen Peroxide/metabolism
2.
Sci Total Environ ; 880: 163182, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37023807

ABSTRACT

To optimize soil and water conservation measures, it is important to consider the spatial configuration and construction scale of terraces on the Loess Plateau in China. However, there are few existing efficient technology frameworks for assessing the impact of changing the spatial configuration and scale on reducing water and sediment loss at the basin scale. To address this gap, this study proposes a framework that employs a distributed runoff and sediment simulation tool coupled with multi-source data and scenario setting methods to identify the impacts of constructing terraces with different spatial configurations and scales on reducing water and sediment loss at the event scale on the Loess Plateau. Four scenarios (i.e. baseline, realistic, configuration changing and scale changing scenarios) were established to evaluate the associated impacts. The results show that, under the realistic scenario, the average water loss reductions within Yanhe Ansai and Gushanchuan Basins are 15.28 % and 8.68 %, respectively, and average sediment reduction rates are 15.97 % and 7.83 %, respectively. The effect of reducing water and sediment loss in the basin is highly related to the spatial configuration of terraces and that terraces should be built as low as possible on hillslopes. The results also show that, if terraces are disorderly constructed, the threshold of the terrace ratio that effectively contains the sediment yield in the hilly and gully regions of the Loess Plateau is approximately 35 %, whereas if the scale of terraces is increased, the sediment reduction effect is not significantly improved. Furthermore, if terraces are configured near the downslope, the threshold of the terrace ratio that can effectively contain sediment yield is further reduced to approximately 25 %. This study can be used as a scientific and methodological reference for optimizing terrace measures at a basin scale in the Loess Plateau and in other similar regions in the world.

3.
Sci Total Environ ; 870: 161852, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36709897

ABSTRACT

The coupling of multisource remote sensing data and the lack of measured runoff introduce input data and model parameters uncertainties to the remote sensing-driven distributed hydrological model (RS-DHM). The PB satellite remote sensing datasets of the Google Earth Engine (GEE) are widely used in RS-DHM and remote sensing runoff inversion research, but whether GEE can reduce the two abovementioned uncertainties is still unknown. To answer this question, twelve remote sensing data sources provided by GEE were used in this study to drive a typical RS-DHM called the remote sensing-driven distributed time-variant gain model (RS-DTVGM) and the remote sensing runoff inversion technology called remote sensing hydrological station (RSHS), and the contribution of GEE to the improving hydrological model uncertainties was quantitatively analyzed from 2001 to 2020. The results showed that (1) the GEE-based improved data preparation not only effectively reduced the uncertainty in the input data with better spatial-temporal continuity and a 6.20 % reduction in the total area occupied by invalid grids, but also enhanced the operational efficiency by reducing the image number, memory size and data processing time of the satellite remote sensing data by 83.63 %, 99.53 %, and 98.73 %, respectively; (2) the GEE-based RSHS technology provided sufficient data support for parameter adjustment and accuracy validation of the RS-DTVGM, which effectively reduced the uncertainty in the model parameters and increased the Nash efficiency coefficient (NSE) in the calibration and validation period from 0.67 to 0.87 and 0.75, respectively; and (3) the calibrated RS-DTVGM was more reliable and robust, and its runoff and evapotranspiration were consistent with the actual statistical data. In the future, GEE and RSHS technology should be widely adopted to drive the RS-DHM to more quickly and easily provide reliable hydrological processes simulation results for integrated water resource management, therefore achieving win-win results in terms of efficiency and accuracy.

4.
Sci Total Environ ; 851(Pt 1): 158170, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988605

ABSTRACT

Hydrological processes in mid-latitude mountainous regions are greatly affected by changes in vegetation cover that induced by the climate change. However, studies on hydrological processes in mountainous regions are limited, because of difficulties in building and maintaining basin-wide representative hydrological stations. In this study, a new method, remote sensing technology for monitoring river discharge by combining satellite remote sensing, unmanned aerial vehicles and hydrological surveying, was used for evaluating the runoff processes in the Changbai Mountains, one of the mid-latitude mountainous regions in the eastern part of Northeast China. Based on this method, the impact of vegetation cover change on hydrological processes was revealed by combining the data of hydrological processes, meteorology, and vegetation cover. The results showed a decreasing trend in the monitored river discharge from 2000 to 2021, with an average rate of -5.13 × 105 m3 yr-1. At the monitoring section mainly influenced by precipitation, the precipitation-induced proportion of changes in river discharge to annual average river discharge and its change significance was only 6.5 % and 0.23, respectively, showing the precipitation change was not the cause for the decrease in river discharge. A negative impact of evapotranspiration on river discharge was found, and the decrease in river discharge was proven to be caused by the increasing evapotranspiration, which was induced by the drastically increased vegetation cover under a warming climate. Our findings suggested that increases in vegetation cover due to climate change could reshape hydrological processes in mid-latitude mountainous regions, leading to an increase in evapotranspiration and a subsequent decrease in river discharge.


Subject(s)
Hydrology , Remote Sensing Technology , China , Climate Change , Rivers
5.
J Environ Manage ; 311: 114833, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35287080

ABSTRACT

This paper explores how human disturbance and hydrologic elements affect the spatial distribution pattern of plant diversity in the watershed, taking Shamu watershed in the World Natural Heritage Site as a case study. Spatial analysis of multisource remote sensing and plant diversity plots data were conducted using linear mixed effects models and structural equation models. Results revealed that the distribution of plant diversity in the watershed is mainly affected by human disturbance. However, under similar human disturbance levels, hydrologic elements also affect the plant diversity within the watershed. The topographic undulation and surface runoff significantly promote plant diversity, while the river network density, the watershed shape factor, the river longitudinal gradient do not. The influence of topographic undulation is more obvious than that of runoff on plant diversity, but the effect of topographic undulation and runoff on plant diversity is getting weaker from upstream to downstream within the watershed. In addition, the impact of hydrologic elements on plant diversity is mainly regulated by environmental factors Pre and Tem. The findings clarify how human disturbance and hydrologic elements affect plant diversity distribution within the watershed, optimizing the conservation theory of plant diversity resources and scientifically guiding the region's sustainable development.

6.
J Environ Manage ; 211: 296-305, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29408079

ABSTRACT

A phosphorus resource crisis threatens the security of global crop production, especially in developing countries like China and Brazil. Legacy phosphorus (legacy-P), which is left behind in agricultural soil by over-fertilization, can help address this issue as a new resource in the soil phosphorus pool. However, issues involved with calculating and defining the spatial distribution of legacy-P hinder its future utilization. To resolve these issues, this study applied remote sensing and ecohydrological modeling to precisely quantify legacy-P and define its spatial distribution in China's Sanjiang Plain from 2000 to 2014. The total legacy-P in the study area was calculated as 579,090 t with an annual average of 38,600 t; this comprises 51.83% of the phosphorus fertilizer applied annually. From 2000 to 2014, the annual amount of legacy-P increased by more than 3.42-fold, equivalent to a 2460-ton increase each year. The spatial distribution of legacy-P showed heterogeneity and agglomeration in this area, with peaks in cultivated land experiencing long-term agricultural development. This study supplies a new approach to finding legacy-P in soil as a precondition for future utilization. Once its spatial distribution is known, legacy-P can be better utilized in agriculture to help alleviate the phosphorus resource crisis.


Subject(s)
Agriculture , Phosphorus/analysis , Brazil , China , Fertilizers , Soil
7.
Sci Total Environ ; 573: 397-408, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27572533

ABSTRACT

The detection of critical source areas (CSAs) is a key step in managing soil phosphorus (P) loss and preventing the long-term eutrophication of water bodies at regional scale. Most related studies, however, focus on a local scale, which prevents a clear understanding of the spatial distribution of CSAs for soil P loss at regional scale. Moreover, the continual, long-term variation in CSAs was scarcely reported. It is impossible to identify the factors driving the variation in CSAs, or to collect land surface information essential for CSAs detection, by merely using the conventional methodologies at regional scale. This study proposes a new regional-scale approach, based on three satellite sensors (ASTER, TM/ETM and MODIS), that were implemented successfully to detect CSAs at regional scale over 15years (2000-2014). The approach incorporated five factors (precipitation, slope, soil erosion, land use, soil total phosphorus) that drive soil P loss from CSAs. Results show that the average area of critical phosphorus source areas (CPSAs) was 15,056km2 over the 15-year period, and it occupied 13.8% of the total area, with a range varying from 1.2% to 23.0%, in a representative, intensive agricultural area of China. In contrast to previous studies, we found that the locations of CSAs with P loss are spatially variable, and are more dispersed in their distribution over the long term. We also found that precipitation acts as a key driving factor in the variation of CSAs at regional scale. The regional-scale method can provide scientific guidance for managing soil phosphorus loss and preventing the long-term eutrophication of water bodies at regional scale, and shows great potential for exploring factors that drive the variation in CSAs at global scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...