Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(4): e2304453, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38032129

ABSTRACT

Microbubble-enabled focused ultrasound (MB-FUS) has revolutionized nano and molecular drug delivery capabilities. Yet, the absence of longitudinal, systematic, quantitative studies of microbubble shell pharmacokinetics hinders progress within the MB-FUS field. Microbubble radiolabeling challenges contribute to this void. This barrier is overcome by developing a one-pot, purification-free copper chelation protocol able to stably radiolabel diverse porphyrin-lipid-containing Definity® analogues (pDefs) with >95% efficiency while maintaining microbubble physicochemical properties. Five tri-modal (ultrasound-, positron emission tomography (PET)-, and fluorescent-active) [64 Cu]Cu-pDefs are created with varying lipid acyl chain length and charge, representing the most prevalently studied microbubble compositions. In vitro, C16 chain length microbubbles yield 2-3x smaller nanoprogeny than C18 microbubbles post FUS. In vivo, [64 Cu]Cu-pDefs are tracked in healthy and 4T1 tumor-bearing mice ± FUS over 48 h qualitatively through fluorescence imaging (to characterize particle disruption) and quantitatively through PET and γ-counting. These studies reveal the impact of microbubble composition and FUS on microbubble dissolution rates, shell circulation, off-target tissue retention (predominantly the liver and spleen), and FUS enhancement of tumor delivery. These findings yield pharmacokinetic microbubble structure-activity relationships that disrupt conventional knowledge, the implications of which on MB-FUS platform design, safety, and nanomedicine delivery are discussed.


Subject(s)
Microbubbles , Neoplasms , Mice , Animals , Copper , Ultrasonography , Lipids/chemistry
2.
Biomaterials ; 292: 121918, 2023 01.
Article in English | MEDLINE | ID: mdl-36442438

ABSTRACT

In combination with immune checkpoint inhibitors, photodynamic therapy can induce robust immune responses capable of preventing local tumor recurrence and delaying the growth of distant, untreated disease (ie. the abscopal effect). Previously, we found that repeated photodynamic therapy (R-PDT) using porphyrin lipoprotein (PLP) as a photosensitizer, without the addition of an immune checkpoint inhibitor, can induce the abscopal effect. To understand why PLP mediated R-PDT alone can induce the abscopal effect, and how the addition of an immune checkpoint inhibitor can further strengthen the abscopal effect, we investigated the broader immune mechanisms facilitated by R-PDT and combination R-PDT + anti-PD-1 monoclonal antibody (αPD-1) in a highly aggressive, subcutaneous AE17-OVA mesothelioma dual tumor-bearing C57BL/6 mice. We found a 46.64-fold and 61.33-fold increase in interleukin-6 (IL-6) after R-PDT and combination R-PDT + αPD-1 relative to PBS respectively, suggesting broad innate immune activation. There was a greater propensity for antigen presentation in the spleen and distal, non-irradiated tumor draining lymph nodes, as dendritic cells and macrophages had increased expression of MHC class II, CD80, and CD86, after R-PDT and combination R-PDT + αPD-1. Concurrently, there was a shift in the proportions of CD4+ T cell subsets in the spleen, and an increase in the frequency of CD8+ T cells in the distal, non-irradiated tumor draining lymph nodes. While R-PDT had an acceptable safety profile, combination R-PDT + αPD-1 induced 1.26-fold higher serum potassium and 1.33-fold phosphorus, suggestive of mild laboratory tumor lysis syndrome. Histology revealed an absence of gross inflammation in critical organs after R-PDT and combination R-PDT + αPD-1 relative to PBS-treated mice. Taken together, our findings shed light on how the abscopal effect can be induced by PDT and strengthened by combination R-PDT + αPD-1, and suggests minimal toxicities after R-PDT.


Subject(s)
Photochemotherapy , Porphyrins , Mice , Animals , Immune Checkpoint Inhibitors , Mice, Inbred C57BL , Cell Line, Tumor , Porphyrins/therapeutic use , Immunity
4.
Mol Pharm ; 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34965727

ABSTRACT

Theranostic nanoparticles aim to integrate diagnostic imaging and therapy to facilitate image-guided treatment protocols. Herein, we present a theranostic nanotexaphyrin for prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and focal photodynamic therapy (PDT) accomplished through the chelation of metal isotopes (In, Lu). To realize nanotexaphyrin's theranostic properties, we developed a rapid and robust 111In/Lu-nanotexaphyrin radiolabeling method using a microfluidic system that achieved a high radiochemical yield (>90%). The optimized metalated nanotexaphyrin displayed excellent chemical, photo, and colloidal stabilities, potent singlet oxygen generation, and favorable plasma circulation half-life in vivo (t1/2 = 6.6 h). Biodistribution, including tumor accumulation, was characterized by NIR fluorescence, SPECT/CT imaging, and γ counting. Inclusion of the PSMA-targeting ligand enabled the preferential accumulation of 111In/Lu-nanotexaphyrin in PSMA-positive (PSMA+) prostate tumors (3.0 ± 0.3%ID/g) at 48 h with tumor vs prostate in a 2.7:1 ratio. In combination with light irradiation, the PSMA-targeting nanotexaphyrin showed a potent PDT effect and successfully inhibited PSMA+ tumor growth in a subcutaneous xenograft model. To the best of our knowledge, this study is the first demonstration of the inherent metal chelation-driven theranostic capabilities of texaphyrin nanoparticles, which, in combination with PSMA targeting, enabled prostate cancer imaging and therapy.

5.
J Nanobiotechnology ; 19(1): 154, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34034749

ABSTRACT

BACKGROUND: Porphyrin-lipids are versatile building blocks that enable cancer theranostics and have been applied to create several multimodal nanoparticle platforms, including liposome-like porphysome (aqueous-core), porphyrin nanodroplet (liquefied gas-core), and ultrasmall porphyrin lipoproteins. Here, we used porphyrin-lipid to stabilize the water/oil interface to create porphyrin-lipid nanoemulsions with paclitaxel loaded in the oil core (PLNE-PTX), facilitating combination photodynamic therapy (PDT) and chemotherapy in one platform. RESULTS: PTX (3.1 wt%) and porphyrin (18.3 wt%) were loaded efficiently into PLNE-PTX, forming spherical core-shell nanoemulsions with a diameter of 120 nm. PLNE-PTX demonstrated stability in systemic delivery, resulting in high tumor accumulation (~ 5.4 ID %/g) in KB-tumor bearing mice. PLNE-PTX combination therapy inhibited tumor growth (78%) in an additive manner, compared with monotherapy PDT (44%) or chemotherapy (46%) 16 days post-treatment. Furthermore, a fourfold reduced PTX dose (1.8 mg PTX/kg) in PLNE-PTX combination therapy platform demonstrated superior therapeutic efficacy to Taxol at a dose of 7.2 mg PTX/kg, which can reduce side effects. Moreover, the intrinsic fluorescence of PLNE-PTX enabled real-time tracking of nanoparticles to the tumor, which can help inform treatment planning. CONCLUSION: PLNE-PTX combining PDT and chemotherapy in a single platform enables superior anti-tumor effects and holds potential to reduce side effects associated with monotherapy chemotherapy. The inherent imaging modality of PLNE-PTX enables real-time tracking and permits spatial and temporal regulation to improve cancer treatment.


Subject(s)
Drug Therapy/methods , Emulsions/chemistry , Lipids/chemistry , Paclitaxel/chemistry , Photochemotherapy/methods , Porphyrins/chemistry , Porphyrins/pharmacology , Animals , Cell Line, Tumor , Drug Carriers , Humans , Liposomes , Mice , Nanoparticles/therapeutic use , Paclitaxel/administration & dosage , Polyethylene Glycols , Therapeutic Uses , Xenograft Model Antitumor Assays
6.
Nanophotonics ; 10(12): 3279-3294, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36405502

ABSTRACT

While photodynamic therapy (PDT) can induce acute inflammation in the irradiated tumor site, a sustained systemic, adaptive immune response is desirable, as it may control the growth of nonirradiated distant disease. Previously, we developed porphyrin lipoprotein (PLP), a ∼20 nm nanoparticle photosensitizer, and observed that it not only efficiently eradicated irradiated primary VX2 buccal carcinomas in rabbits, but also induced regression of nonirradiated metastases in a draining lymph node. We hypothesized that PLP-mediated PDT can induce an abscopal effect and we sought to investigate the immune mechanism underlying such a response in a highly aggressive, dual subcutaneous AE17-OVA+ mesothelioma model in C57BL/6 mice. Four cycles of PLP-mediated PDT was sufficient to delay the growth of a distal, nonirradiated tumor four-fold relative to controls. Serum cytokine analysis revealed high interleukin-6 levels, showing a 30-fold increase relative to phosphate-buffered solution (PBS) treated mice. Flow cytometry revealed an increase in CD4+ T cells and effector memory CD8+ T cells in non-irradiated tumors. Notably, PDT in combination with PD-1 antibody therapy prolonged survival compared to monotherapy and PBS. PLP-mediated PDT shows promise in generating a systemic immune response that can complement other treatments, improving prognoses for patients with metastatic cancers.

7.
Angew Chem Int Ed Engl ; 58(42): 14974-14978, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31410962

ABSTRACT

A nanoemulsion with a porphyrin shell (NewPS) was created by the self-assembly of porphyrin salt around an oil core. The NewPS system has excellent colloidal stability, is amenable to different porphyrin salts and oils, and is capable of co-loading with chemotherapeutics. The porphyrin salt shell enables porphyrin-dependent optical tunability. The NewPS consisting of pyropheophorbide a mono-salt has a porphyrin shell of ordered J-aggregates, which produced a narrow, red-shifted Q-band with increased absorbance. Upon nanostructure dissociation, the fluorescence and photodynamic reactivity of the porphyrin monomers are restored. The spectrally distinct photoacoustic imaging (at 715 nm by intact NewPS) and fluorescence increase (at 671 nm by disrupted NewPS) allow the monitoring of NewPS accumulation and disruption in mice bearing KB tumors to guide effective photodynamic therapy. Substituting the oil core with Lipiodol affords additional CT contrast, whereas loading paclitaxel into NewPS facilitates drug delivery.


Subject(s)
Drug Carriers/chemistry , Ethiodized Oil/chemistry , Nanoparticles/chemistry , Neoplasms , Paclitaxel/administration & dosage , Photoacoustic Techniques/methods , Porphyrins/chemistry , Theranostic Nanomedicine/methods , Animals , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Emulsions , Humans , KB Cells , Mice, Nude , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Paclitaxel/therapeutic use , Particle Size , Xenograft Model Antitumor Assays
9.
Muscle Nerve ; 55(2): 179-189, 2017 02.
Article in English | MEDLINE | ID: mdl-27313001

ABSTRACT

INTRODUCTION: Neuromuscular electrical stimulation (NMES) can be delivered over a muscle belly (mNMES) or nerve trunk (nNMES). Both methods generate contractions that fatigue rapidly due, in part, to non-physiologically high motor unit (MU) discharge frequencies. In this study we introduce interleaved NMES (iNMES), whereby stimulus pulses are alternated between mNMES and nNMES. iNMES was developed to recruit different MU populations with every other stimulus pulse, with a goal of reducing discharge frequencies and muscle fatigue. METHODS: Torque and electromyography were recorded during fatigue protocols (12 min, 240 contractions) delivered using mNMES, nNMES, and iNMES. RESULTS: Torque declined significantly 3 min into iNMES and 1 min into both mNMES and nNMES. Torque decreased by 39% during iNMES and by 67% and 58% during mNMES and nNMES, respectively. CONCLUSIONS: iNMES resulted in less muscle fatigue than mNMES and nNMES. Delivering NMES in ways that reduce MU discharge frequencies holds promise for reducing muscle fatigue during NMES-based rehabilitation. Muscle Nerve, 2016 Muscle Nerve 55: 179-189, 2017.


Subject(s)
Electric Stimulation/methods , Muscle Contraction/physiology , Muscle Fatigue/physiology , Neuromuscular Junction/physiology , Adolescent , Adult , Analysis of Variance , Biophysics , Electromyography , Female , Functional Laterality , Humans , Male , Middle Aged , Muscle, Skeletal , Torque , Young Adult
10.
Can J Physiol Pharmacol ; 92(10): 821-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25223503

ABSTRACT

The afferent volley generated by neuromuscular electrical stimulation (NMES) influences corticospinal (CS) excitability and frequent NMES sessions can strengthen CS pathways, resulting in long-term improvements in function. This afferent volley can be altered by manipulating NMES parameters. Presently, we manipulated one such parameter, pulse duration, during NMES over the common peroneal nerve and assessed the influence on H-reflexes and CS excitability. We hypothesized that compared with shorter pulse durations, longer pulses would (i) shift the H-reflex recruitment curve to the left, relative to the M-wave curve; and (ii) increase CS excitability more. Using 3 pulse durations (50, 200, 1000 µs), M-wave and H-reflex recruitment curves were collected and, in separate experiments, CS excitability was assessed by comparing motor evoked potentials elicited before and after 30 min of NMES. Despite finding a leftward shift in the H-reflex recruitment curve when using the 1000 µs pulse duration, consistent with a larger afferent volley for a given efferent volley, the increases in CS excitability were not influenced by pulse duration. Hence, although manipulating pulse duration can alter the relative recruitment of afferents and efferents in the common peroneal nerve, under the present experimental conditions it is ineffective for maximizing CS excitability for rehabilitation.


Subject(s)
H-Reflex/physiology , Muscle, Skeletal/innervation , Pyramidal Tracts/physiology , Tibia/innervation , Adolescent , Adult , Electric Stimulation , Electromyography , Female , Humans , Male , Middle Aged , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...