Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 281: 116644, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944009

ABSTRACT

The toxic metalloid arsenic is prevalent in the environment and poses a threat to nearly all organisms. However, the mechanism by which phytohormones modulate arsenic resistance is not well-understood. Therefore, we analyzed multiple phytohormones based on the results of transcriptome sequencing, content changes, and related mutant growth under arsenic stress. We found that ethylene was the key phytohormone in Arabidopsis thaliana response to arsenic. Further investigation showed the ethylene-overproducing mutant eto1-1 generated less malondialdehyde (MDA), H2O2, and O2•- under arsenic stress compared to wild-type, while the ethylene-insensitive mutant ein2-5 displayed opposite patterns. Compared to wild-type, eto1-1 accumulated a smaller amount of arsenic and a larger amount of non-protein thiols. Additionally, the immediate ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), enhanced resistance to arsenic in wide-type, but not in mutants with impaired detoxification capability (i.e., cad1-3, pad2-1, abcc1abcc2), which confirmed that ethylene regulated arsenic detoxification by enhancing arsenic chelation. ACC also upregulated the expression of gene(s) involved in arsenic detoxification, among which ABCC2 was directly transcriptionally activated by the ethylene master transcription factor ethylene-insensitive 3 (EIN3). Overall, our study shows that ethylene is the key phytohormone to enhance arsenic resistance by reducing arsenic accumulation and promoting arsenic detoxification at both physiological and molecular levels.

2.
New Phytol ; 242(6): 2430-2439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38586981

ABSTRACT

Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.


Subject(s)
Calcium Signaling , Calcium , Plant Immunity , Calcium/metabolism , Cytosol/metabolism , Intracellular Space/metabolism , Models, Biological
3.
Environ Sci Pollut Res Int ; 30(57): 120300-120314, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37936041

ABSTRACT

Since the Industrial Revolution, crops have been exposed to various changes in the environment, including elevated atmospheric carbon dioxide (CO2) concentration and cadmium (Cd) pollution in soil. However, information about how combined changes affect crop is limited. Here, we have investigated the changes of japonica and indica rice subspecies seedlings under elevated CO2 level (1200 ppm) and Cd exposure (5 µM Cd) conditions compared with ambient CO2 level (400 ppm) and without Cd exposure in CO2 growth chambers with hydroponic experiment. The results showed that elevated CO2 levels significantly promoted seedling growth and rescued the growth inhibition under Cd stress. However, the elevated CO2 levels led to a significant increase in the shoot Cd accumulation of the two rice subspecies. Especially, the increase of shoot Cd accumulation in indica rice was more than 50% compared with control. Further investigation revealed that the decreases in the photosynthetic pigments and photosynthetic rates caused by Cd were attenuated by the elevated CO2 levels. In addition, elevated CO2 levels increased the non-enzymatic antioxidants and significantly enhanced the ascorbate peroxidase (APX) and glutathione reductase (GR) activities, alleviating the lipid peroxidation and reactive oxygen species (ROS) accumulation induced by Cd. Overall, the research revealed how rice responded to the elevated CO2 levels and Cd exposure, which can help modify agricultural practices to ensure food security and food safety in a future high-CO2 world.


Subject(s)
Carbon Dioxide , Oryza , Cadmium , Oxidative Stress , Glutathione/metabolism , Antioxidants/metabolism , Seedlings/metabolism
4.
Front Plant Sci ; 13: 1032681, 2022.
Article in English | MEDLINE | ID: mdl-36275602

ABSTRACT

Accumulation of arsenic (As) and cadmium (Cd) in wheat grain is a serious threat to human health. Sulfur (S) can simultaneously decrease wheat grain As and Cd concentrations by decreasing their translocation in wheat; however, the mechanisms are unclear. We conducted hydroponic experiments to explore the mechanisms by which S modulates As and Cd translocation and their toxicity in wheat. Wheat seedlings were grown in deficient sulfate (2.5 µM) or sufficient sulfate (1.0 mM) nutrient solutions for 6 days and then exposed to zero (control), low As+Cd (1 µM As plus 0.5 µM Cd), or high As+Cd (50 µM As plus 30 µM Cd) for another 6 days. Compared with the control, plant growth was not affected by low As+Cd, but was significantly inhibited by high As+Cd. In the low As+Cd treatment, S supply had no significant effect on plant growth or root-to-shoot As and Cd translocation. In the high As+Cd treatment, sufficient S supply significantly alleviated As and Cd toxicity and their translocation by increasing phytochelatin (PC) synthesis and the subsequent vacuolar sequestration of As and Cd in roots, compared with deficient S supply. The use of L-buthionine sulfoximine (a specific inhibitor of γ-glutamylcysteine synthetase) confirmed that the alleviation of As and Cd translocation and toxicity in wheat by S is mediated by increased PC production. Also, TaHMA3 gene expression in wheat root was not affected by the As+Cd and S treatments, but the expression of TaABCC1 was upregulated by the high As+Cd treatment and further increased by sufficient S supply and high As+Cd treatment. These results indicate that S-induced As and Cd subcellular changes affect As and Cd translocation mainly by regulating thiol metabolism and ABCC1 expression in wheat under As and Cd stress.

5.
Chemosphere ; 303(Pt 1): 135016, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35598785

ABSTRACT

Rice (Oryza sativa L.) is one of the main food crops, it plays an important role in the human diet. Arsenic (As) contamination in paddy soil inhibits rice growth and reduces rice yield seriously. In addition, As accumulated in rice grains was harmful to human health through the food chain. Using the exogenous method to alleviate As stress and reduce As accumulation in rice grain is one of the potential ways to achieve food safety in polluted farmland. In the present study, 10 bacteria was applied to evaluate the effects of plant growth-promoting bacteria (PGPBs) on rice growth and As accumulation in rice grain. The results showed higher levels of As inhibited PGPB growth, the most tolerant and sensitive bacteria were Bj05 and Ls09, with the growth reduction of 16.9% and 96.7% under 50 mM As, respectively. Most of 10 PGPBs enhanced rice growth and improved rice grain weight under As exposure, among them, Ts06 showed the most effective one. Six of 10 PGPBs reduced rice grain As levels significantly, the highest reduction of grain As was observed in Ts06 inoculated rice, with grain As deceasing to 46.3% of the control. Bj05 was the only one which caused the increase in grain As of Yangdao 6. The Pearson correlation analysis showed grain As concentration negatively correlated with leave As concentration, while did not correlated with total As accumulated in shoot, and soil available As and P. The present results indicated that some PGPBs inhibited As translocation from leave to grain, thus reduced As accumulation in rice grain. Ts06 was suggested to be a candidate as microbial amendments for As-contaminated paddy fields.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Bacteria , Edible Grain/chemistry , Humans , Soil , Soil Pollutants/analysis
6.
J Appl Microbiol ; 132(1): 520-531, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34216530

ABSTRACT

AIMS: The study aims to identify a novel plant growth-promoting bacteria (PGPB), which contributes to promoting growth and reducing cadmium (Cd) concentration in rice under Cd-contaminated conditions. METHODS AND RESULTS: Nine bacterial strains were isolated from plants grown in Cd-contaminated soil. These bacteria were tolerant to 1000 µmol/L CdCl2 , capable of producing indole-3-acetic acid, fixing nitrogen and solubilizing phosphate. The result of hydroponic experiment showed that under the control and Cd stress conditions, the dry weight of the Tm02-inoculated rice seedlings increased significantly. Furthermore, under Cd stress, the concentration of Cd in the shoot of the Tm02-inoculated seedlings decreased significantly, while there was no significant difference in Cd concentration between treatment with other eight strains and noninoculated seedlings. The same results were observed in the pot experiment as well, where there was a significantly reduced Cd concentration in rice grains of the Tm02-inoculated rice plants. Tm02 was classified as Pantoea agglomerans through 16S rDNA sequencing. CONCLUSIONS: A novel PGPB strain Tm02 was identified and confirmed that it has the function of promoting rice growth and reducing Cd concentration in rice grain under Cd-contaminated conditions. This strain has the potential to improve rice yield in Cd-contaminated paddy fields. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides a new example of using PGPB to improve the tolerance of rice to Cd pollution.


Subject(s)
Oryza , Soil Pollutants , Bacteria/genetics , Cadmium/analysis , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
7.
Ecotoxicol Environ Saf ; 205: 111333, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32979802

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are a specific category of microbes that improve plant growth and promote greater tolerance to metal stress through their interactions with plant roots. We evaluated the effects of phytoremediation combining the cadmium accumulator Solanum nigrum L. and two Cd- and Pb-resistant bacteria isolates. To understand the interaction between PGPR and their host plant, we conducted greenhouse experiments with inoculation treatments at Nanjing Agricultural University (Jiangsu Province, China), in June 2018. Two Cd- and Pb-resistant PGPR with various growth-promoting properties were isolated from heavy metal-contaminated soil. 16S rRNA analyses indicated that the two isolates were Bacillus genus, and they were named QX8 and QX13. Pot experiments demonstrated that inoculation may improve the rhizosphere soil environment and promote absorption of Fe and P by plants. Inoculation with QX8 and QX13 also enhanced the dry weight of shoots (1.36- and 1.7-fold, respectively) and roots (1.42- and 1.96-fold) of plants growing in Cd- and Pb-contaminated soil, and significantly increased total Cd (1.28-1.81 fold) and Pb (1.08-1.55 fold) content in aerial organs, compared to non-inoculated controls. We also detected increases of 23% and 22% in the acid phosphatase activity of rhizosphere soils inoculated with QX8 and QX13, respectively. However, we did not detect significant differences between inoculated and non-inoculated treatments in Cd and Pb concentrations in plants and available Cd and Pb content in rhizosphere soils. We demonstrated that PGPR-assisted phytoremediation is a promising technique for remediating heavy metal-contaminated soils, with the potential to enhance phytoremediation efficiency and improve soil quality.


Subject(s)
Cadmium/analysis , Lead/analysis , Rhizobiaceae/metabolism , Soil Microbiology , Soil Pollutants/analysis , Solanum nigrum/drug effects , Biodegradation, Environmental , Cadmium/metabolism , China , Lead/metabolism , Plant Roots/growth & development , RNA, Ribosomal, 16S , Rhizosphere , Soil/chemistry , Soil Pollutants/metabolism , Solanum nigrum/growth & development , Solanum nigrum/metabolism
8.
Ecotoxicol Environ Saf ; 205: 111131, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32827964

ABSTRACT

Arsenic (As) is one of the most toxic contaminants to food crops, and as such, decreasing crops uptake and accumulation of As cannot be overemphasized. Here, we characterized a functional wheat NIP2;1 homolog of the As transporter, TaNIP2;1. TaNIP2;1 expression was suppressed by arsenite (As(III)) in wheat. Ectopic expression of TaNIP2;1 in the Δfps1 yeast mutant enhanced yeast sensitivity towards As(III). Conversely, the elevated expression of TaNIP2;1 in Δacr3 mutants decreased yeast sensitivity to arsenate (As(V)), demonstrating that TaNIP2;1 showed both influx and efflux transport activities for As(III) in yeasts. This is further supported by increased As concentration in the yeast cells that overproduce TaNIP2;1 in Δfps1, while As concentration decreased in Δacr3. Furthermore, ectopic expression of TaNIP2;1 in Arabidopsis confirmed that TaNIP2;1 can transport As into plants, as supported by increased sensitivity to and uptake of As(III). No change in plant sensitivity was found to Cu(II), Cd(II), Zn(II) or Ni(II), indicating that transport activity of TaNIP2;1 is specific for As(III). Taken together, our data show that TaNIP2;1 may be involved in As(III) transportation in plants. This finding reveals a functional gene that can be manipulated to reduce As content in wheat.


Subject(s)
Aquaglyceroporins/genetics , Arabidopsis/drug effects , Arsenites/toxicity , Ectopic Gene Expression/drug effects , Soil Pollutants/toxicity , Triticum/drug effects , Adaptation, Physiological/drug effects , Aquaglyceroporins/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arsenites/metabolism , Bioaccumulation , Biological Transport , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Soil Pollutants/metabolism , Triticum/genetics , Triticum/metabolism
9.
Int J Mol Sci ; 21(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041113

ABSTRACT

Cadmium (Cd) is a toxic heavy metal element. It is relatively easily absorbed by plants and enters the food chain, resulting in human exposure to Cd. Italian ryegrass (Lolium multiflorum Lam.), an important forage cultivated widely in temperate regions worldwide, has the potential to be used in phytoremediation. However, genes regulating Cd translocation and accumulation in this species are not fully understood. Here, we optimized PacBio ISO-seq and integrated it with RNA-seq to construct a de novo full-length transcriptomic database for an un-sequenced autotetraploid species. With the database, we identified 2367 differentially expressed genes (DEGs) and profiled the molecular regulatory pathways of Italian ryegrass with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in response to Cd stress. Overexpression of a DEG LmAUX1 in Arabidopsis thaliana significantly enhanced plant Cd concentration. We also unveiled the complexity of alternative splicing (AS) with a genome-free strategy. We reconstructed full-length UniTransModels using the reference transcriptome, and 29.76% of full-length models had more than one isoform. Taken together, the results enhanced our understanding of the genetic diversity and complexity of Italian ryegrass under Cd stress and provided valuable genetic resources for its gene identification and molecular breeding.


Subject(s)
Cadmium/toxicity , Gene Expression Profiling/methods , Lolium/growth & development , Plant Proteins/genetics , Alternative Splicing , Biodegradation, Environmental , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Lolium/genetics , Lolium/physiology , Plant Breeding , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Sequence Analysis, RNA , Stress, Physiological , Tetraploidy
10.
Sci Total Environ ; 713: 136665, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31955111

ABSTRACT

Arsenic (As) and cadmium (Cd) typically exhibit divergent fates in soil, which complicates efforts to decrease As and Cd accumulation in the edible parts of crops. Here, we performed pot experiments to examine the effect of sulfate application on As and Cd accumulation in the grain of wheat grown in contaminated soil. Compared to the control (no sodium sulfate addition), application of 120 mg kg-1 sodium sulfate decreased the rhizosphere soil pH from 7.27 to 7.10 and increased the soil extractable Cd concentration; however, it did not significantly influence the soil extractable As concentration. However, sodium sulfate addition decreased As and Cd concentrations in wheat grain, in association with decreased As and Cd translocation from root and straw to grain, rather than from soil to root. Furthermore, sodium sulfate addition significantly decreased membrane lipid peroxidation and enhanced photosynthesis, while increasing the uptake of nitrogen, phosphorus, and sulfur. These effects increased the growth and grain weight of plants grown in As and Cd co-contaminated soil. Our findings provide insight into the mechanisms by which sulfate modulates As and Cd uptake and translocation in wheat; moreover, our findings will enable formulation of strategies to decrease As and Cd concentrations in the grain of wheat grown in As and Cd co-contaminated soil.


Subject(s)
Triticum , Arsenic , Cadmium , Edible Grain , Soil , Soil Pollutants , Sulfates
11.
Plants (Basel) ; 8(11)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739628

ABSTRACT

This study aimed to evaluate the gene expression of HSP70 and HMA3 in the switchgrass inoculated with plant-growth-promoting-bacteria (PGPB) under cadmium (Cd) stress and to observe the benefit of PGPB in plant growth and development. Plants were grown in hydroponic culture and treated with PGPB inoculants: Pseudomonas grimontii, Pantoea vagans, Pseudomonas veronii, and Pseudomonas fluorescens with the strains Bc09, So23, E02, and Oj24, respectively. The experimental results revealed that HSP70 and HMA3 genes expressed highly in the PGPB-inoculated plants under Cd stress. In addition, the expression of HSP70 and HMA3 genes was considerably higher in the first two days after successive four-day exposure of Cd in plants compared to the last two days of exposure. Increased biomass and indole-3-acetic-acid production with reduced Cd accumulation were observed in the PGPB-inoculated plants under Cd stress compared to the Cd-control plants. These PGPB, with their beneficial mechanisms, protect plants by modifying the gene expression profile that arises during Cd-toxic conditions and increased the healthy biomass of switchgrass. This demonstrates there is a correlation among the growth parameters under Cd stress. The PGPB in this study may help to intensify agriculture by triggering mechanisms to encourage plant growth and development under heavy metal stress.

12.
Chemosphere ; 214: 94-102, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30261421

ABSTRACT

Two wheat (Triticum aestivum L.) cultivars differing in arsenic (As)-tolerance were used to investigate the effects of phosphorus (P) concentration and nutrient solution pH on As(V) toxicity and As(V) uptake kinetics, and to illustrate the mechanism of As(V) tolerance in wheat seedlings. Low pH and low phosphate concentration enhanced wheat uptake of As, resulting in high As toxicity. The As(V)-tolerant cultivar MM45 exhibited higher relative root elongation than non-tolerant cultivar HM29 in all treatments, except that no genotypic difference was recorded for the solution P at 100 µmol L-1 or greater. Wheat seedling As(V) tolerance was positively correlated with P concentration in roots and shoots. In short-term (30 min) As(V)-uptake kinetics experiments, the maximum influx rate (Vmax) of As(V) increased with decreasing solution pH (from 7.0 to 6.0). Compared with HM29, although MM45 had lower Vmax, its Michaelis-Menten constant (Km) did not exceed that of HM29 in all treatments. The Vmax values of both cultivars were not significantly affected by phosphate treatments, except for HM29 which had significantly higher Vmax value in the presence of phosphate at pH 7.0. The Km values of the two cultivars increased by 9- to 20-fold when phosphate was present as opposed to absent from the uptake solution. This study showed that the Vmax values are mainly increased by high pH and As(V) uptake Km is mainly increased by phosphate presence. Decreased As(V) influx rates during early stages and increased P concentration in plant tissues are associated with increased As tolerance in wheat seedlings.


Subject(s)
Arsenates/pharmacokinetics , Drug Tolerance , Phosphorus/pharmacology , Triticum/drug effects , Hydrogen-Ion Concentration , Seedlings/drug effects , Species Specificity
13.
Plant Cell Rep ; 37(11): 1485-1497, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30003312

ABSTRACT

KEY MESSAGE: Transcriptome analysis of Cd-treated switchgrass roots not only revealed novel switchgrass transcripts and gene structures but also highlighted the indispensable role of HSF/HSP network in switchgrass Cd tolerance. Switchgrass (Panicum virgatum L.), a C4 perennial tall grass, can be used for revegetation of Cd-contaminated soil. In the present study, a comparative transcriptome analysis of Cd-treated switchgrass roots was conducted. The result revealed a total of 462 novel transcripts and refined gene structures of 2337 transcripts. KEGG pathway and Gene Ontology analyses of the differentially expressed genes (DEGs) suggested that activation of redox homeostasis and oxidation-related metabolic processes were the primary response to Cd stress in switchgrass roots. In particular, 21 out of 23 differentially expressed shock transcription factor genes (HSFs), and 22 out of 23 differentially expressed heat shock protein genes (HSPs) had increased expression levels after Cd treatment. Furthermore, over-expressing one HSP-encoding gene in Arabidopsis significantly improved plant Cd tolerance. The result highlighted the activation of the redox homeostasis and the involvement of the HSF/HSP network in re-establishing normal protein conformation and thus cellular homeostasis in switchgrass upon Cd stress. These DEGs, especially those of the HSF/HSP network, could be used as candidate genes for further functional studies toward improved plant Cd tolerance in switchgrass and related species.


Subject(s)
Cadmium/adverse effects , Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Panicum/genetics , Plant Roots/genetics , Transcriptome , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/physiology , Cadmium Chloride/adverse effects , Gene Expression , Gene Ontology , Heat Shock Transcription Factors/genetics , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Panicum/drug effects , Panicum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/physiology , RNA, Plant/chemistry , RNA, Plant/genetics , Sequence Analysis, RNA , Stress, Physiological
14.
Environ Sci Pollut Res Int ; 25(1): 43-51, 2018 Jan.
Article in English | MEDLINE | ID: mdl-27798801

ABSTRACT

Widespread contamination of rice with arsenic (As) has revealed a major exposure pathway to humans. The present study aimed to investigate the effects of oxygen in the rhizosphere on phosphate (P) transporter (for arsenate transportation) expressions, on As and P accumulation and As speciation in four rice genotypes. Oxygenation marginally increased root and shoot length. Total As concentrations in rice roots were dramatically reduced following aeration compared to stagnant treatments (p < 0.001). Aeration treatments significantly increased arsenate while reducing arsenite concentrations in roots (p < 0.001). Root arsenite concentrations were 1.5-2.5 times greater in stagnant than in aeration treatments. Total P concentrations in rice roots were dramatically increased following aeration compared to stagnant treatments. The relative abundance of phosphate transporter (inorganic phosphate transporter and phosphate/H+ symporter family protein) expressions showed downregulation in aeration treatments, particularly for SY-9586, XWX-17, and XWX-12 in inorganic phosphate transporter expressions and XWX-17 in phosphate/H+ symporter family protein expression (p < 0.05). The relative abundance of phosphate carrier protein expressions were relatively higher than the other phosphate transporters, showing upregulation in aeration treatments.


Subject(s)
Arsenic/metabolism , Oryza/metabolism , Oxygen/metabolism , Phosphate Transport Proteins/genetics , Phosphates/metabolism , Soil Pollutants/metabolism , Genotype , Models, Theoretical , Oryza/genetics , Plant Roots/genetics , Plant Roots/metabolism , Soil/chemistry
15.
PeerJ ; 5: e3621, 2017.
Article in English | MEDLINE | ID: mdl-29018594

ABSTRACT

Cadmium (Cd) is one of the most toxic heavy metals and is difficult to be removed from contaminated soil and water. Italian ryegrass (Lolium multiflorum), as an energy crop, exhibits a valuable potential to develop Cd polluted sites due to its use as a biofuel rather than as food and forage. Previously, via a screening for Cd-tolerant ryegrass, the two most extreme cultivars (IdyII and Harukaze) with high and low Cd tolerance during seed germination, respectively, were selected. However, the underlying mechanism for Cd tolerance was not well investigated. In this study, we comparatively investigated the growth, physiological responses, and Cd uptake and translocation of IdyII and Harukaze when the seedlings were exposed to a Cd (0-100 µM) solution for 12 days. As expected, excess Cd inhibited seedling growth and was accompanied by an accumulation of malondialdehyde (MDA) and reduced photosynthetic pigments in both cultivars. The effects of Cd on the uptake and translocation of other nutrient elements (Zn, Fe, Mn and Mg) were dependent on Cd concentrations, cultivars, plant tissues and elements. Compared with Harukaze, IdyII exhibited better performance with less MDA and higher pigment content. Furthermore, IdyII was less efficient in Cd uptake and translocation compared to Harukaze, which might be explained by the higher non-protein thiols content in its roots. Taken together, our data indicate that IdyII is more tolerant than Harukaze, which partially resulted from the differences in Cd uptake and translocation.

16.
Article in English | MEDLINE | ID: mdl-28758909

ABSTRACT

Strigolactones (SLs) are classified into plant hormones, playing a key role as a mediator of plant growth in response to several abiotic stresses, including drought and salinity. However, the role of SLs in cadmium (Cd)-induced stress to plants is still unknown. The physiological responses of switchgrass (Panicum virgatum) stressed in 10 µmol L-1 Cd to exogenous synthetic SLs analog, GR24 were studied in hydroponics. The Cd stress significantly caused the adverse effects on plant growth and root morphology, inhibited photosynthesis, but boosted lipid peroxidation of Switchgrass seedlings. After treatment of 1 µmol L-1 GR24, the above adverse effects caused by Cd stress were significantly alleviated, mainly reflects in improvement of shoot biomass, relative water content, root development, chlorophyll contents, activities of typical antioxidant enzymes, nutrient uptake. The reason for exogenous GR24 alleviating cadmium toxicity might be owing to that exogenous GR24 promoted the content of endogenous SLs, increased some essential element Fe (iron), Zn (zinc), Mn (manganese) and Cu (copper) uptake and reduced cadmium uptake, accumulation and partition in shoot of switchgrass seedlings.


Subject(s)
Cadmium/toxicity , Lactones/pharmacology , Panicum/drug effects , Seedlings/drug effects , Antioxidants/pharmacology , Biological Transport/drug effects , Biomass , Cadmium/metabolism , Chlorophyll/metabolism , Lipid Peroxidation/drug effects , Photosynthesis/drug effects , Plant Roots/drug effects , Seedlings/growth & development
17.
Chemosphere ; 138: 447-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26171731

ABSTRACT

Arsenic (As) contamination of paddy soils has adversely affected the health of millions of people those consuming rice for staple food. The present study was aimed at investigating the effects of silicon (Si) fertilization on As uptake, speciation in rice plants with different radial oxygen loss (ROL). Six genotypes were planted in pot soils under greenhouse conditions until late tillering state. The results showed that the rates of ROL were higher in hybrid rice genotypes varying from 19.76 to 27 µmol O2 g(-1) root dry weight h(-1) than that in conventional indica rice genotypes varying from 9.55 to 15.41 µmol O2 g(-1) root dry weight h(-1). Si addition significantly increased straw biomass (p<0.005), but with no significant effects on root biomass. Si fertilization significantly reduced shoot and root total As concentrations (p<0.001) in six genotypes grown in 40 mg As/kg soil. Si addition decreased the inorganic As in shoots of 'Xiangfengyou-9' with lower ROL and 'Xiangwanxian-12' with higher ROL by 31% and 25% respectively and had the tendency to increase DMA concentrations. It is potential to reduce As contamination of rice efficiently by combining Si fertilization and selecting genotypes with high radial oxygen loss.


Subject(s)
Arsenic/chemistry , Arsenic/metabolism , Genotype , Oryza/drug effects , Oryza/metabolism , Oxygen/metabolism , Silicon/pharmacology , Biomass , Fertilizers , Oryza/genetics , Soil/chemistry , Soil Pollutants/chemistry , Soil Pollutants/metabolism
18.
Biotechnol Adv ; 27(5): 633-40, 2009.
Article in English | MEDLINE | ID: mdl-19393734

ABSTRACT

Pot trials were conducted to study the influence of copper (Cu) on the growth and biomass of Elephant grass (EG, Pennisetum purpureum Schumach), Vetiver grass (VG, Vetiveria zizanioides) and the upland reed (UR, Phragmites australis). Cu toxicity in EG, VG and UR was positively correlated with the total and bioavailable Cu concentrations in the soil. Based on the EC50, dry weights, Cu contents, chlorophyll contents and photosynthesis rates, the Cu tolerance of the three species followed the trend EGNVGNUR. There were no significant differences in the unit calorific values among the different plants, though the total calorific values of EG were higher than those of VG and UR due to its higher biomass. The addition of KH2PO4 to the soil decreased the bioavailability of Cu and the Cu uptake by plants. EG could therefore be a good candidate for growth on Cu-contaminated soils, especially those improved by phosphate.


Subject(s)
Biomass , Copper/toxicity , Poaceae/growth & development , Soil Pollutants/toxicity , Analysis of Variance , Calorimetry , Carbohydrates/analysis , Chlorophyll/metabolism , Chrysopogon/growth & development , Linear Models , Pennisetum/growth & development , Phosphates/chemistry , Photosynthesis , Potassium Compounds/chemistry , Stress, Physiological
19.
Sci Total Environ ; 392(1): 22-9, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18178241

ABSTRACT

The concentrations of heavy metals in the leaves of two aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq., and the corresponding water and sediment samples from the Donghe River in Jishou City of Hunan Province, China were studied to investigate metal contamination from the intensive industrial activities in the surrounding area. Results showed that the concentrations of heavy metals in the sediments, especially Cd, Mn and Pb, were much higher than the eco-toxic threshold values developed by the U. S. Environmental Protection Agency. Between the two plant species, P. pectinatus showed the higher capacity in metal accumulation. The highest concentrations of Cd, Pb, Cu, Zn and Mn were found in the leaves of P. pectinatus, reaching 596, 318, 62.4, 6590 and 16,000 mg kg(-1) (DW), respectively. Significantly positive relationships were observed among the concentrations of Zn, Cu and Mn in the leaves of both aquatic plants and those in water, indicating the potential use of the two plants for pollution monitoring of these metals. In addition, a laboratory experiment was conducted to investigate the ability of P. pectinatus and P. malaianus to remove heavy metals from contaminated river water. The average removal efficiencies by P. pectinatus and P. malaianus for Cd, Pb, Mn, Zn and Cu from the spiked Donghe River water were 92%, 79%, 86%, 67% and 70%, respectively. The results indicated that P. pectinatus and P. malaianus had high capabilities to remove heavy metals directly from the contaminated water. The potential use of these plants in wastewater treatment is worth further exploration.


Subject(s)
Geologic Sediments/chemistry , Metals, Heavy/metabolism , Potamogetonaceae/metabolism , Water Pollutants, Chemical/metabolism
20.
Environ Geochem Health ; 29(6): 473-81, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17874190

ABSTRACT

A greenhouse pot experiment was conducted to investigate the effects of the colonization of arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the growth and metal uptake of three leguminous plants (Sesbania rostrata, Sesbania cannabina, Medicago sativa) grown in multi-metal contaminated soil. AMF colonization increased the growth of the legumes, indicating that AMF colonization increased the plant's resistance to heavy metals. It also significantly stimulated the formation of root nodules and increased the N and P uptake of all of the tested leguminous plants, which might be one of the tolerance mechanisms conferred by AMF. Compared with the control, colonization by G. mosseae decreased the concentration of metals, such as Cu, in the shoots of the three legumes, indicating that the decreased heavy metals uptake and growth dilution were induced by AMF treatment, thereby reducing the heavy metal toxicity to the plants. The root/shoot ratios of Cu in the three legumes and Zn in M. sativa were significantly increased (P<0.05) with AMF colonization, indicating that heavy metals were immobilized by the mycorrhiza and the heavy metal translocations to the shoot were decreased.


Subject(s)
Medicago sativa/growth & development , Metals, Heavy/metabolism , Mycorrhizae/physiology , Sesbania/growth & development , Copper/metabolism , Medicago sativa/metabolism , Medicago sativa/microbiology , Mycorrhizae/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/metabolism , Plant Shoots/microbiology , Sesbania/metabolism , Sesbania/microbiology , Soil Pollutants/analysis , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...