Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 229(2): 935-949, 2021 01.
Article in English | MEDLINE | ID: mdl-32865276

ABSTRACT

The degree of rice tillering is an important agronomic trait that can be markedly affected by nitrogen supply. However, less is known about how nitrogen-regulated rice tillering is related to polar auxin transport. Compared with nitrate, ammonium induced tiller development and was paralleled with increased 3 H-indole-acetic acid (IAA) transport and greater auxin into the junctions. OsPIN9, an auxin efflux carrier, was selected as the candidate gene involved in ammonium-regulated tillering based on GeneChip data. Compared with wild-type plants, ospin9 mutants had fewer tillers, and OsPIN9 overexpression increased the tiller number. Additionally, OsPIN9 was mainly expressed in vascular tissue of the junction and tiller buds, and encoded a membrane-localised protein. Heterologous expression in Xenopus oocytes and yeast demonstrated that OsPIN9 is a functional auxin efflux transporter. More importantly, its RNA and protein levels were induced by ammonium but not by nitrate, and tiller numbers in mutants did not respond to nitrogen forms. Further advantages, including increased tiller number and grain yield, were observed in overexpression lines grown in the paddy field at a low-nitrogen rate compared with at a high-nitrogen rate. Our data revealed that ammonium supply and an auxin efflux transporter co-ordinately control tiller bud elongation in rice.


Subject(s)
Ammonium Compounds , Oryza , Edible Grain , Indoleacetic Acids , Oryza/genetics , Plant Proteins/genetics
2.
Front Plant Sci ; 10: 1527, 2019.
Article in English | MEDLINE | ID: mdl-31824543

ABSTRACT

Strigolactones (SLs) and their derivatives are plant hormones that have recently been identified as regulators of primary lateral root (LR) development. However, whether SLs mediate secondary LR production in rice (Oryza sativa L.), and how SLs and auxin interact in this process, remain unclear. In this study, the SL-deficient (dwarf10) and SL-insensitive (dwarf3) rice mutants and lines overexpressing OsPIN2 (OE) were used to investigate secondary LR development. The effects of exogenous GR24 (a synthetic SL analogue), 1-naphthylacetic acid (NAA; an exogenous auxin), 1-naphthylphthalamic acid (NPA; a polar auxin transport inhibitor), and abamine (a synthetic SL inhibitor) on rice secondary LR development were investigated. Rice d mutants with impaired SL biosynthesis and signaling exhibited increased secondary LR production compared with wild-type (WT) plants. Application of GR24 decreased the numbers of secondary LRs in dwarf10 (d10) plants but not in dwarf3 (d3), plants. These results indicate that SLs negatively regulate rice secondary LR production. Higher expression of DR5::GUS and more secondary LR primordia were found in the d mutants than in the WT plants. Exogenous NAA application increased expression of DR5::GUS in the WT, but had no effect on secondary LR formation. No secondary LRs were recorded in the OE lines, although DR5::GUS levels were higher than in the WT plants. However, on application of NPA, the numbers of secondary LRs were reduced in d10 and d3 mutants. Application of NAA increased the number of secondary LRs in the d mutants. GR24 eliminated the effect of NAA on secondary LR development in the d10, but not in the d3, mutants. These results demonstrate the importance of auxin in secondary LR formation, and that this process is inhibited by SLs via the D3 response pathway, but the interaction between auxin and SLs is complex.

3.
Int J Mol Sci ; 20(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627334

ABSTRACT

The response of root architecture to phosphate (P) deficiency is critical in plant growth and development. Auxin is a key regulator of plant root growth in response to P deficiency, but the underlying mechanisms are unclear. In this study, phenotypic and genetic analyses were undertaken to explore the role of OsPIN2, an auxin efflux transporter, in regulating the growth and development of rice roots under normal nutrition condition (control) and low-phosphate condition (LP). Higher expression of OsPIN2 was observed in rice plants under LP compared to the control. Meanwhile, the auxin levels of roots were increased under LP relative to control condition in wild-type (WT) plants. Compared to WT plants, two overexpression (OE) lines had higher auxin levels in the roots under control and LP. LP led to increased seminal roots (SRs) length and the root hairs (RHs) density, but decreased lateral roots (LRs) density in WT plants. However, overexpression of OsPIN2 caused a loss of sensitivity in the root response to P deficiency. The OE lines had a shorter SR length, lower LR density, and greater RH density than WT plants under control. However, the LR and RH densities in the OE lines were similar to those in WT plants under LP. Compared to WT plants, overexpression of OsPIN2 had a shorter root length through decreased root cell elongation under control and LP. Surprisingly, overexpression of OsPIN2 might increase auxin distribution in epidermis of root, resulting in greater RH formation but less LR development in OE plants than in WT plants in the control condition but levels similar of these under LP. These results suggest that higher OsPIN2 expression regulates rice root growth and development maybe by changing auxin distribution in roots under LP condition.


Subject(s)
Oryza/growth & development , Phosphates/metabolism , Plant Proteins/physiology , Stress, Physiological , Gene Expression , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...