Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38656108

ABSTRACT

Topological insulators (TIs) with spin-momentum-locked surface states and considerable spin-to-charge conversion (SCC) efficiency are ideal substitutes for the nonmagnetic layer in the traditional ferromagnetic/nonmagnetic (FM/NM) spintronic terahertz (THz) emitters. Here, the TI/ferrimagnetic structure as an effective polarization tunable THz source is verified by terahertz emission spectroscopy. The emitted THz electric field can be separated into two THz components utilizing their opposite symmetry on pump polarization and the magnetic field. TI not only emits a THz electric field via the linear photogalvanic effect (LPGE) but also serves as the medium of SCC via the inverse Edelstein effect (IEE) in the heterostructure. In addition, the amplitude and polarity of the SCC component can be efficiently manipulated by temperature in our ferrimagnetic TbFeCo layer compared with Co or Fe. Once these two THz components are delicately set orthogonally, an elliptical THz wave is generated by the intrinsic phase difference at the THz frequency range. The feasible control of its polarization and chirality is demonstrated by three means: pump polarization, magnetic field, and temperature. These appealing observations may pave the way for the development of elliptical THz wave emitters and polarization-sensitive THz spectroscopy.

2.
J Phys Chem Lett ; 12(22): 5349-5356, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34076440

ABSTRACT

CoTPP, as a common hypsoporphyrin, is usually not a luminescent molecule because of the open-shell Co ion. In this paper, well-defined multilayer CoTPP molecules self-assembled on Au(111) surface are characterized layer by layer with scanning tunneling microscope (STM) induced luminescence. By using the highly localized STM tunneling current, we not only investigate the influence of bias polarity on the amplitude of distinct plasmonic emission resulted from the interaction between the metal substrate and the metal ions but also first obtain the light emission from the hypsoporphyrins in the tunneling junction. The density-matrix method and the combined approach of classical electrodynamics and first-principles calculation are used to explain the mechanism of the light emission. These findings may expand the underlying physics of plasmon-exciton coupling in STM nanocavity and reveal a new possible path to overcome the fluorescent potential of hypsoporphyrins by the intense localized electric fields.

3.
Nanoscale Res Lett ; 16(1): 90, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34021820

ABSTRACT

We investigate the fluorescence from submonolayer rhodamine 6G molecules near gold nanoparticles (NPs) at a well-controlled poly (methyl methacrylate) (PMMA) interval thickness from 1.5 to 21 nm. The plasmonic resonance peaks of gold NPs are tuned from 530 to 580 nm by the PMMA spacer of different thicknesses. Then, due to the plasmonic resonant excitation enhancement, the emission intensity of rhodamine 6G molecules at 562 nm is found to be enhanced and shows a decline as the PMMA spacer thickness increases. The variation of spectral intensity simulated by finite-difference time-domain method is consistent with the experimental results. Moreover, the lifetime results show the combined effects to rhodamine 6G fluorescence, which include the quenching effect, the barrier effect of PMMA as spacer layer and the attenuation effect of PMMA films.

4.
Opt Express ; 26(3): 3489-3496, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401876

ABSTRACT

We investigate the fluorescence from submonolayer porphyrin molecules near silver-polymer core-shell nanoparticles (NPs) at a well-controlled separation distance of about 1 nm - 5 nm. When porphyrin molecules are deposited on silver NPs with the plasmonic resonance peak at about 410 nm, which matches very closely with the 405-nm excitation laser and the absorption band of porphyrin molecules, their emission intensity is found to be enhanced due to the plasmonic resonant excitation enhancement, and shows a decline as the increasing polymer shell thickness. Meanwhile, the lifetime results demonstrate that there exists the fluorescence quenching due to the charge transfer and nonradiative energy transfer losses, which is also the main reason that the maximum enhancement factor obtained in experiment is only about 2.3, although the theoretical one is above 60 according to the electric field distribution near silver NPs calculated by finite-difference time-domain method.

5.
Sci Rep ; 6: 22756, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26948654

ABSTRACT

ZnTPP (Zinc-Tetraphenylporphyrin) is one of the most common nanostructured materials, having high stability and excellent optoelectronic properties. In this paper, the fluorescence features of self-assembled ZnTPP monomers and aggregates on Au(111) surface are investigated in detail on the nanometer scale with scanning tunneling microscopy (STM). The formation of ZnTPP dimers is found in thick layers of a layer-by-layer molecular assembly on Au substrate with its specific molecular arrangement well characterized. Tip-induced luminescence shows a red shift from tilted dimers comparing with the behavior from monomers, which can be attributed to the change of vibrational states due to the intermolecular interaction and the increasing dielectric effect. The nanoscale configuration dependence of electroluminescence is demonstrated to provide a powerful tool aiding the design of functional molecular photoelectric devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...