Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Autism Dev Disord ; 51(10): 3610-3623, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33394241

ABSTRACT

Many neurodevelopmental disorders (NDDs) share common learning and behavioural impairments, as well as features such as dysregulation of the oxytocin hormone. Here, we examined DNA methylation (DNAm) in the 1st intron of the oxytocin receptor gene, OXTR, in patients with autism spectrum (ASD), attention deficit and hyperactivity (ADHD) and obsessive compulsive (OCD) disorders. DNAm of OXTR was assessed for cohorts of ASD (blood), ADHD (saliva), OCD (saliva), which uncovered sex-specific DNAm differences compared to neurotypical, tissue-matched controls. Individuals with ASD or ADHD exhibiting extreme DNAm values had lower IQ and more social problems, respectively, than those with DNAm within normative ranges. This suggests that OXTR DNAm patterns are altered across NDDs and may be correlated with common clinical outcomes.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Obsessive-Compulsive Disorder , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , DNA Methylation , Female , Humans , Male , Oxytocin/metabolism , Receptors, Oxytocin/genetics
2.
Genes (Basel) ; 12(2)2021 01 27.
Article in English | MEDLINE | ID: mdl-33513760

ABSTRACT

Epigenetic alterations at imprinted genes on different chromosomes have been linked to several imprinting disorders (IDs) such as Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1b (PHP1b). Here, we present a male patient with these two distinct IDs caused by two independent mechanisms-loss of methylation (LOM) at chromosome 11p15.5 associated with multi-locus imprinting disturbances (MLID and paternal uniparental disomy of chromosome 20 (patUPD20). A clinical diagnosis of BWS was made based on the clinical features of macrosomia, macroglossia, and umbilical hernia. The diagnosis of PHP1b was supported by the presence of reduced growth velocity and mild learning disability as well as hypocalcemia and hyperphosphatemia at 14 years of age. Molecular analyses, including genome-wide DNA methylation (Illumina 450k array), bisulfite pyrosequencing, single nucleotide polymorphism (SNP) array and microsatellite analysis, demonstrated loss of methylation (LOM) at IC2 on chromosome 11p15.5, and paternal isodisomy of the entire chromosome 20. In addition, imprinting disturbances were noted at the differentially methylated regions (DMRs) associated with DIRAS3 on chromosome 1 and PLAGL1 on chromosome 6. This is the first case report of PHP1b due to patUPD20 diagnosed in a BWS patient with LOM at IC2 demonstrating etiologic heterogeneity for multiple imprinting disorders in a single individual.


Subject(s)
Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Chromosomes, Human, Pair 20 , Genetic Association Studies , Genetic Predisposition to Disease , Paternal Inheritance , Uniparental Disomy , Child , CpG Islands , DNA Methylation , Epigenesis, Genetic , Gene Expression Profiling , Genomic Imprinting , Humans , Loss of Heterozygosity , Male , Microsatellite Repeats , Pedigree , Polymorphism, Single Nucleotide
3.
J Clin Oncol ; 34(30): 3697-3704, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27551116

ABSTRACT

PURPOSE: Although the link between mutant TP53 and human cancer is unequivocal, a significant knowledge gap exists in clinically actionable molecular targets in Li-Fraumeni syndrome (LFS), a highly penetrant cancer predisposition syndrome associated with germline mutations in TP53. This study surveyed the epigenome to identify functionally and clinically relevant novel genes implicated in LFS. PATIENTS AND METHODS: We performed genome-wide methylation analyses of peripheral blood leukocyte DNA in germline TP53 mutation carriers (n = 72) and individuals with TP53 wild type in whom histologically comparable malignancies developed (n = 111). Targeted bisulfite pyrosequencing was performed on a validation cohort of 30 TP53 mutation carriers and 46 patients with TP53 wild type, and candidate sites were evaluated in primary tumors from patients with LFS across multiple histologic tumor types. RESULTS: In 183 patients, distinct DNA methylation signatures were associated with deleterious TP53 mutations in peripheral blood leukocytes. TP53-associated DNA methylation marks occurred in genomic regions that harbored p53 binding sites and in genes encoding p53 pathway proteins. Moreover, loss-of-function TP53 mutations were significantly associated with differential methylation at the locus encoding microRNA miR-34A, a key component of the p53 regulatory network (adjusted P < .001), and validated in an independent patient cohort (n = 76, P < .001). Targeted bisulfite pyrosequencing demonstrated that miR-34A was inactivated by hypermethylation across many histologic types of primary tumors from patients with LFS. Moreover, miR-34A tumor hypermethylation was associated with decreased overall survival in a cohort of 29 patients with choroid plexus carcinomas, a characteristic LFS tumor (P < .05). CONCLUSION: Epigenetic dysregulation of miR-34A may comprise an important path in TP53-associated cancer predisposition and represents a therapeutically actionable target with potential clinical relevance.

4.
BMC Med Genomics ; 6: 1, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23356856

ABSTRACT

BACKGROUND: A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment. RESULTS: Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP. CONCLUSIONS: We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.


Subject(s)
DNA Methylation , Oxidoreductases, N-Demethylating/genetics , Blood Cell Count , Brain/metabolism , Calcium-Binding Proteins/blood , Calcium-Binding Proteins/genetics , Chromosomes, Human, X , Chromosomes, Human, Y , CpG Islands , Epigenesis, Genetic , F-Box Proteins/blood , F-Box Proteins/genetics , Female , Histone Demethylases , Histones/genetics , Histones/metabolism , Humans , Male , Mutation , Polycomb-Group Proteins/blood , Polycomb-Group Proteins/genetics , Promoter Regions, Genetic , Ubiquitin-Protein Ligase Complexes , Ubiquitin-Protein Ligases/blood , Ubiquitin-Protein Ligases/genetics
5.
Genome Res ; 21(3): 465-76, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21324877

ABSTRACT

Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative allelic differential methylation. In parallel, the methylation profiles of tissues of uniparental origin, i.e., paternally-derived androgenetic complete hydatidiform moles (AnCHMs), and maternally-derived mature cystic ovarian teratoma (MCT), were examined and then used to identify CpGs with parent of origin-specific DNA methylation. With this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597, and novel candidate imprinted genes. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was also validated in experiments with mouse embryos that demonstrated Axl was expressed preferentially from the maternal allele in a DNA methylation-dependent manner.


Subject(s)
DNA/genetics , Genomic Imprinting , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Alleles , Animals , Base Sequence , CpG Islands/genetics , DNA/chemistry , DNA Methylation , Embryo, Mammalian , Female , Genetic Variation , Genome , Humans , Hydatidiform Mole/genetics , Hydatidiform Mole/metabolism , Mice , Microarray Analysis/methods , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Pregnancy , Pregnancy Complications/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Sex Factors , Sulfites/chemistry , Teratoma/genetics , Teratoma/metabolism , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...