Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Biofilms Microbiomes ; 7(1): 6, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479252

ABSTRACT

The process of microbiologically influenced corrosion (MIC) in soils has received widespread attention. Herein, long-term outdoor soil burial experiments were conducted to elucidate the community composition and functional interaction of soil microorganisms associated with metal corrosion. The results indicated that iron-oxidizing (e.g., Gallionella), nitrifying (e.g., Nitrospira), and denitrifying (e.g., Hydrogenophaga) microorganisms were significantly enriched in response to metal corrosion and were positively correlated with the metal mass loss. Corrosion process may promote the preferential growth of the abundant microbes. The functional annotation revealed that the metabolic processes of nitrogen cycling and electron transfer pathways were strengthened, and also that the corrosion of metals in soil was closely associated with the biogeochemical cycling of iron and nitrogen elements and extracellular electron transfer. Niche disturbance of microbial communities induced by the buried metals facilitated the synergetic effect of the major MIC participants. The co-occurrence network analysis suggested possible niche correlations among corrosion related bioindicators.


Subject(s)
Microbiota , Soil Microbiology , Steel/chemistry , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolism , Corrosion , Electron Transport , Environmental Biomarkers , Iron/metabolism , Nitrogen/metabolism , Soil/chemistry
2.
Bioact Mater ; 5(4): 902-916, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32637753

ABSTRACT

Biodegradable magnesium alloys are challenging to be implanted in patients with hyperglycemia and diabetes. A hypothesis is suggested that glucose accelerates microbial ingress and in vitro degradation of Mg-Li-Ca implants. Corrosion resistance and mechanical properties was demonstrated using electrochemical, hydrogen evolution and tensile tests. The bacteria from Hank's solution were isolated via 16S rRNA gene analysis. The results revealed that Mg-1Li-1Ca alloy exhibited different responses to Hank's solution with and without glucose. The solution acidity was ascribed to Microbacterium hominis and Enterobacter xiangfangensis, indicating that glucose promoted microbial activity and degradation and deterioration in mechanical property of Mg-1Li-1Ca alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...