Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Discov Oncol ; 15(1): 227, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874696

ABSTRACT

PURPOSE: To assess the prognostic value of three novel biomarkers, DNA ploidy, stroma-tumor fraction, and nucleotyping, seeking for more accurate stratification in stage II colon cancer. METHODS: A total of 417 patients with complete follow up information were enrolled in this study and divided into three clinical risk groups. IHC was performed to examine MSI status. DNA ploidy, stroma and nucleotyping were estimated using automated digital imaging system. Kaplan-Meier survival curves, Cox proportional hazards regression models, and correlation analyses were carried out to process our data. RESULTS: In the whole cohort of stage II colon cancer, nucleotyping and DNA ploidy were significant prognostic factors on OS in univariate analyses. The combination of nucleotyping and DNA ploidy signified superior OS and DFS. Difference was not significant between low-stroma and high-stroma patients. In multivariable analyses, nucleotyping and the combination of nucleotyping and DNA ploidy were proven the dominant contributory factors for OS. In the low-risk group, we found the combination of nucleotyping and DNA ploidy as the independent prognostic factor statistically significant in both univariate and multivariable, while in the high-risk group, the nucleotyping. CONCLUSIONS: Our study has proven nucleotyping and the combination of DNA ploidy and nucleotyping as independent prognostic indicators, thus expanding the application of nucleotyping as a predictor from high risk stage II colon cancer to whole risks.

2.
Angew Chem Int Ed Engl ; 63(34): e202406906, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38819764

ABSTRACT

Eutectic electrolytes show potential beyond conventional low-concentration electrolytes (LCEs) in zinc (Zn)-ion capacitors (ZICs) yet suffer from high viscosity and sluggish kinetics. Herein, we originally propose a universal theory of intrinsically decoupling to address these issues, producing a novel electrolyte termed "quasi-eutectic" electrolyte (quasi-EE). Joint experimental and theoretical analyses confirm its unique solution coordination structure doped with near-LCE domains. This enables the quasi-EE well inherit the advanced properties at deep-eutectic states while provide facilitated kinetics as well as lower energy barriers via a vehicle/hopping-hybridized charge transfer mechanism. Consequently, a homogeneous electroplating pattern with much enhanced Sand's time is achieved on the Zn surface, followed by a twofold prolonged service-life with drastically reduced concentration polarization. More encouragingly, the quasi-EE also delivers increased capacitance output in ZICs, which is elevated by 12.4 %-144.6 % compared to that before decoupling. Furthermore, the pouch cell with a cathodic mass loading of 36.6 mg cm-2 maintains competitive cycling performances over 600 cycles, far exceeding other Zn-based counterparts. This work offers fresh insights into eutectic decoupling and beyond.

SELECTION OF CITATIONS
SEARCH DETAIL