Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(57): 120030-120043, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37934409

ABSTRACT

Elevated Sb(V) concentration in textile wastewater is a growing environmental concern worldwide and has received wider attention in recent years. Iron oxides possess appealing characteristics as efficient and cost-effective adsorbents in large-scale applications. In the present study, Sb(V) adsorption capacity of α-Fe2O3, γ-Fe2O3, and Fe3O4 was compared under experimental conditions close to the practical textile wastewater treatment. Results demonstrated that α-Fe2O3 performed better under different pH values, reaction times, dye compounds, and co-existing ions as compared to γ-Fe2O3 and Fe3O4, and the adsorption equilibrium was achieved within 8 h. Sb(V) adsorption is found to be highly pH dependent, and higher removal was achieved in lower pH, indicating the involvement of electrostatic interactions. The pHpzc value of α-Fe2O3 was 7.15, which favored Sb(V) adsorption in practical wastewater having neutral pH value (pH ~ 7). Pseudo-first- and pseudo-second-order described the data and the simulated values of qe fitted well with the experimental values, indicating that pseudo-second-order model described the adsorption kinetics better with R2 (> 0.95) higher than of pseudo-first-order plots. The Langmuir and Freundlich models both described well the sorption data of all the adsorbents, where the R2 values were > 0.90 with a better fit in the Freundlich model for α-Fe2O3, suggesting that the adsorbent has heterogeneous surface characteristics. Similarly, characterizations revealed that the specific surface area, pore volume, and hydroxyl group content in α-Fe2O3 were higher than others, making it easier for contaminants to bind on to the active sites. Furthermore, the effect of dyes and co-existing anions on Sb(V) adsorption was negligible, except for SO42-, CO32-, and PO43- by the formation of inner-sphere complexes with iron oxides through competitive adsorption with [Sb(OH)6]-. Findings from the present study suggested that α-Fe2O3 effectively reduced Sb(V) in textile wastewater and could be a promising alternative for practical textile wastewater treatment.


Subject(s)
Wastewater , Water Pollutants, Chemical , Coloring Agents , Anions , Adsorption , Textiles , Hydrogen-Ion Concentration , Oxides , Iron , Kinetics , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 338: 139612, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482312

ABSTRACT

The ubiquitous heavy metal(loid)s (HMs) contamination has triggered great concern about food safety, while sequestration and separation of trace HMs from herbal extracts still calls for appropriate sorbent materials. In this work, gum acacia was modified by cysteine to form a cysteine-acacia intermolecular complex (Cys-GA complex) via facile mechanochemical synthesis, aiming at capturing multiple HMs simultaneously. Preliminary screening confirms the superiority of Cys-CA complex for both cationic and anionic HMs, and determines an optimum Cys/GA mass ratio of 9:1 to achieve high removal capacities for Pb(II) (938 mg g-1), Cd(II) (834 mg g-1), As(V) (496 mg g-1), and Cr(VI) (647 mg g-1) in simulated aqueous solution. The analysis on HMs-exhausted Cys-GA complex indicates that Pb(II), As(V), and Cr(VI) tend to be removed through chelation, electrostatic attraction, and reduction, while Cd(II) can only be chelated or adsorbed by electrostatic interaction. The batch experiments on commercial herbal (e.g. Panax ginseng, Glycine max, Sophora flavescens, Gardenia jasminoides, Cyclocarya paliurus, and Bamboo leaf) extracts indicate that Cys-GA complex can reduce HMs concentration to attain acceptable level that comply with International Organization for Standardization, with negligible negative effect on its active ingredients. This work provides a practical and convenient strategy to purify HMs-contaminated foods without introducing secondary pollution.


Subject(s)
Cysteine , Metals, Heavy , Gum Arabic , Cadmium , Lead , Metals, Heavy/analysis , Plant Extracts , Risk Assessment
3.
J Environ Manage ; 345: 118571, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37421725

ABSTRACT

Mechanochemical (MC) remediation with zero-valent iron (ZVI) as co-milling agent enables the non-combustion and solvent-free disposal of solid halogenated organic pollutants (HOPs) via solid-phase reaction, but suffers from incomplete dechlorination (especially for less chlorinated chemicals). Herein, a reduction-oxidation coupling strategy using ZVI and peroxydisulfate as synergistic (ZVI-PDS) co-milling agents was investigated, with 2,4-dichlorophenol (2,4-DCP) as probe contaminant. By revisiting the MC destruction process of 2,4-DCP by ZVI, the contribution of both reductive and oxidative routes is confirmed, and the inefficient •OH generation is addressed. With ball-to-material and reagent-to-pollutant mass ratios of 30:1 and 13:1, respectively, ZVI-PDS achieves higher dechlorination ratio (86.8%) for 2,4-DCP within 5 h, outcompeting sole ZVI (40.3%) or PDS (33.9%), due to the accumulation of numerous SO4•-. As suggested by a two-compartment kinetic model, the optimal ZVI/PDS molar ratio of 4:1 is determined, which balances the relative contribution of reductive/oxidative routes and leads to a maximum mineralization efficiency of 77.4%. The analysis on product distribution verifies the generation of dechlorinated, ring-opening and minor coupling products (with low acute toxicity). This work validates the necessity to couple reduction with oxidation in MC destruction for solid HOPs, and may provide information on reagent formulation.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Iron/analysis , Environmental Pollutants/analysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
4.
Environ Sci Process Impacts ; 25(3): 472-483, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36722905

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of highly fluorinated, anthropogenic compounds that are used in a wide variety of consumer applications. Due to their widespread use and high persistence, PFAS are ubiquitous in drinking water, which is of concern due to the threats these compounds pose to human health. Reduction via the hydrated electron is a promising technology for PFAS remediation and has been well-studied. However, since previous work rarely reports fluorine atom balances and often relies on suspect screening, some transformation products are likely unaccounted for. Therefore, we performed non-target analysis using high-resolution mass spectrometry on solutions of perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorooctanoate (PFOA), and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) that had been treated with UV/sulfite to produce hydrated electrons. We determined fluorine atom balances for all compounds studied, finding high fluorine atom balances for PFOS and PFBS. PFOA and GenX had lower overall fluorine atom balances, likely due to the production of volatile or very polar transformation products that were not measured by our methods. Transformation products identified by our analysis were consistent with literature, with a few exceptions. Namely, shorter-chain perfluorosulfonates (PFSA) and their H/F substituted counterparts were also detected from PFOS. This is an unexpected result based on literature, as no documented pathway exists for the formation of shorter-chain PFSA during UV/sulfite treatment. Furthermore, the nontarget approach we employed allowed for identification of novel, unsaturated products from the hydrated electron treatment of perfluorooctanesulfonate (PFOS) that warrant further investigation.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Humans , Fluorine , Fluorocarbons/analysis , Sulfites
5.
Environ Pollut ; 319: 121014, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36608727

ABSTRACT

Zero-valent iron (Fe) is commonly employed as an additive for the mechanochemical destruction (MCD) of organic pollutants. The poly- and perfluoroalkyl substances (e.g., perfluorooctane sulfonate, PFOS) are a class of toxic environmental pollutants that are difficult to effectively degrade due to their thermodynamic and chemical stability. In this study, magnetite (Fe3O4) was applied to improve the milling performance of Fe to PFOS and its promoting mechanisms were emphatically explored. The desulfurization rate was in ahead of the defluorination rate because the C-S bond is less stable than the C-F bonds in PFOS. Fe3O4 had an excellent reinforcement effect on the milling performance of Fe, which was mainly through accelerating the electron transfer as a conductor, reacting with Fe to produce FeO, and facilitating the formation of HO●. During the MCD of PFOS with Fe/Fe3O4 as an additive, HO● played a dominant role in the defluorination process (accounting for >67%). After the elimination of sulfonate group (-SO3-), the produced radical (C7F15CF2●) continued to react through two main pathways: one was the stepwise defluorination after hydrogenation, and the other one was oxidation reaction after alcoholization to yield the corresponding aldehydes and carboxylic acids. The optimum Fe fraction (MFe) was 30%, and air atmosphere was more effective than oxygen and nitrogen conditions. This study helps to comprehensively understand the role of Fe3O4 in defluorination and fills the gap of Fe/Fe3O4 application in the MCD of PFASs.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Iron/chemistry , Ferrosoferric Oxide , Alkanesulfonic Acids/chemistry , Fluorocarbons/chemistry , Environmental Pollutants/chemistry
6.
Chemosphere ; 281: 130913, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34029962

ABSTRACT

Enzyme-catalyzed electrolysis system (EES) is a promising technique for the efficient dechlorination of pollutants. In this study, ionic liquids (ILs) was first introduced to enhance the dichloromethane dechlorination performance of an EES. An imidazole-based IL, 1-ethyl-3-methylimidazole tetrafluoroborate ([EMIM][BF4]), was chosen due to its excellent performance on dechlorination enhancement than other three ILs. The cyclic voltammograms with different scan rates shows that the presence of IL increased the apparent electron transfer rate constant (ks) from 0.008 to 0.013 s-1. The calculated surface electroactive species concentration (τc) also increased from 7.8 × 10-9 to 9.5 × 10-9 mol cm-2. Electrochemical impedance spectroscopy analysis illustrates that the IL mainly weakened the interfacial resistance between electrolyte and cathode to accelerate the electron communication in the EES. The introduction of IL facilitated the regeneration of reduced glutathione from oxidized glutathione, whereas inhibited the catalytic activity of dehalogenase via the disruption of secondary structure shown in circular dichroism spectra. The presence of IL was also facilitated the dichloromethane diffusion from electrolyte to cathode. The mass transfer rate constants of dichloromethane (km,d) increased by 6.9 times after the addition of IL. The optimum volume concentration, pH value, reaction temperature and applied voltage were 20%, 7, 35 °C and -0.8 V vs Ag/AgCl, respectively. The study is helpful to understand the promotion mechanism of IL on the dechlorination performance of EES when it is adopted as a treatment technique.


Subject(s)
Ionic Liquids , Catalysis , Electrolysis , Electrons , Methylene Chloride
7.
Bioresour Technol ; 319: 124110, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32977091

ABSTRACT

To overcome the high biotoxicity and poor biodegradability of pyridine and its derivatives, a pre-electrochemical treatment combined with fixed bed biofilm reactor (EC-FBBR) was designed for multi-component stream including pyridine (Pyr), 3-cyanopyridine (3-CNPyr), and 3-chloropyridine (3-ClPyr). The EC-FBBR system could simultaneously degrade these pollutants with a mineralization efficiency of 90%, especially for the persistent 3-ClPyr. Specifically, the EC could partially degrade all pollutants, and allow them to be completely destructed in FBBR. With EC off, Rhodococcus (35.5%) became the most abundant genus in biofilm, probably due to its high tolerance to 3-ClPyr. With EC on, 3-ClPyr was reduced to an acceptable level, thus Paracoccus (21.1%) outcompeted among interspecies competition with Rhodococcus and became the dominant genus. Paracoccus was considered to participate in the subsequent degradation for the residual 3-ClPyr, and led to the complete destruction for all pollutants. This study proposed promising combination for effective treatment of multi-component pyridine wastewater.


Subject(s)
Microbiota , Wastewater , Biofilms , Bioreactors , Pyridines , Waste Disposal, Fluid
8.
Adv Mater ; 32(17): e1906910, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32162726

ABSTRACT

Sulfidized nanoscale zerovalent iron (SNZVI) is a promising material for groundwater remediation. However, the relationships between sulfur content and speciation and the properties of SNZVI materials are unknown, preventing rational design. Here, the effects of sulfur on the crystalline structure, hydrophobicity, sulfur speciation, corrosion potential, and electron transfer resistance are determined. Sulfur incorporation extended the nano-Fe0 BCC lattice parameter, reduced the Fe local vacancies, and lowered the resistance to electron transfer. Impacts of the main sulfur species (FeS and FeS2 ) on hydrophobicity (water contact angles) are consistent with density functional theory calculations for these FeSx phases. These properties well explain the reactivity and selectivity of SNZVI during the reductive dechlorination of trichloroethylene (TCE), a hydrophobic groundwater contaminant. Controlling the amount and speciation of sulfur in the SNZVI made it highly reactive (up to 0.41 L m-2 d-1 ) and selective for TCE degradation over water (up to 240 moles TCE per mole H2 O), with an electron efficiency of up to 70%, and these values are 54-fold, 98-fold, and 160-fold higher than for NZVI, respectively. These findings can guide the rational design of robust SNZVI with properties tailored for specific application scenarios.

9.
Environ Sci Technol ; 53(22): 13344-13352, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31622083

ABSTRACT

Exposing nanoscale zerovalent iron (NZVI) to dissolved sulfide species improves its performance as a remediation agent. However, the impacts of sulfur dose and sulfidation time on morphology, sulfur content, reactivity, and selectivity of the resulting sulfidized NZVI (SNZVI) have not been systematically evaluated. We synthesized SNZVI using different sulfur doses and sulfidation times and measured their properties. The measured S/Fe molar ratio in the particles ([S/Fe]particle) was 10-500 times lower than [S/Fe]dosed but was predictable based on [S/Fe]dosed × tsulfidation. The low sulfur content (0.02-0.65 mol % S/Fe) inhibited the reaction of SNZVI with water (up to 13-fold) and increased its reactivity with trichloroethene (TCE) (up to 14-fold) and its electron efficiency (up to 20-fold). A higher [S/Fe]particle (0.86-1.13 mol % S/Fe) led to complex particle structures and lowered the resistance to electron transfer but did not improve the benefits realized at the lower S/Fe ratios. Adding small amounts of sulfur into NZVI led to more accumulation of acetylene, especially for low Fe/TCE conditions, suggesting that sulfur lowers the rate of hydrogenation of acetylene to ethene. These results show that [S/Fe]dosed × tsulfidation can be used to predict the measured S content in the particles and that affects reactivity, longevity, and electron selectivity, for post-SNZVI.


Subject(s)
Trichloroethylene , Water Pollutants, Chemical , Iron , Sulfides , Sulfur
10.
Chemosphere ; 237: 124494, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31394444

ABSTRACT

The wide use of antimony in textile industry has posed threat to ecological health and attracted increased attention. The objective of this work was to develop enhanced coagulation strategies including PFS/FeSO4 and aerated PFS/FeSO4 for efficient antimony elimination from textile wastewater matrix. With a dosage of 0.75 mM Fe, aerated PFS/FeSO4 coagulation could achieve 82.6% removal of 500 µg L-1 Sb(V) from simulated textile wastewater, which was better than PFS (77.6%) and PFS/FeSO4 coagulation (79.9%). Compared with PFS and PFS/FeSO4 coagulation, aerated PFS/FeSO4 strategy could meet the indirect discharge standard (<100 µg L-1), without any other additional treatment. pH ranged from 5 to 6 could reach 93.8% Sb(V) removal, by affecting coagulant hydrolysis and charges on flocs. Phosphate ion with a level more than 0.03 mM could compete with Sb(V) species and thus reduced its removal. Temperature of 35 °C could lead to enhanced Sb(V) removal by accelerating coagulant hydrolysis. Flocs of aerated PFS/FeSO4 had smaller average size than that of PFS and PFS/FeSO4 coagulation. FeOOH was the hydrolysis product of aerated PFS/FeSO4 strategy. Adsorption, rather than direct and co-precipitation was predominant in the coagulation mechanism. From the phosphate extraction test, 64% of the Sb could form inner-sphere surface complex during aerated PFS/FeSO4 coagulation removal.


Subject(s)
Antimony/analysis , Textile Industry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Phosphates , Textiles
11.
Chemosphere ; 224: 306-315, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30844587

ABSTRACT

Sulfidation of nanoscale zerovalent iron (nZVI) has attracted increasing interest for improving the reactivity and selectivity of nZVI towards various contaminants, such as aqueous Cr(VI) removal. However, the benefits derived from sulfide modification that govern the removal of Cr(VI) remains unclear, which was studied in this work. S-nZVI with higher S/Fe molar ratio showed higher surface area, the discrepancy between the surface-area-normalized removal capacity of Cr(VI) by S-nZVI with different S/Fe indicated that the removal of Cr(VI) was also affected by other factors, such as electron transfer ability, surface-bounded Fe(II) species, and surface charges. High specific surface area would provide more active site for Cr(VI) removal, and as an efficient electron conductor, acicular-like FeSx phase would also favor electron transfer from Fe0 core to Cr(VI). Low initial pH also enhanced the Cr(VI) removal, and the Cr(VI) removal capacity by S-nZVI and nZVI was not affected by aging process, these results confirmed that the Fe(II) species also played an important role in the Cr(VI) removal. Other influence factors were also investigated for potential application, including temperature, initial Cr(VI) concentration, ionic strength, and co-existed ions. The removal mechanism of Cr(VI) by S-nZVI involved the sulfide modification to increase the specific surface area and provide more active sites, the corrosion of Fe0 to produce surface-bounded Fe(II) species to adsorb Cr(VI) species, followed by the favored reduction of Cr(VI) to Cr(III) due to the electron transfer ability of FeSx, then the formation of Cr(III)/Fe(III) hydroxides precipitates.


Subject(s)
Chromium/analysis , Iron/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Models, Theoretical , Osmolar Concentration
12.
J Hazard Mater ; 362: 148-159, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30236935

ABSTRACT

Titanium carbide (TiC) with excellent electrical conductivity, chemical and thermal stabilities has been recognized as one of the most promising electrocatalysts. A novel cathode, titanium carbide doped palladium/nickel foam (TiC-Pd/Ni foam), was synthesized via electroless deposition to improve the performance of Pd/Ni foam in electrocatlytic hydrodechlorination (ECH). TiC can be co-precipitated onto the surface of cathode during galvanic replacement reaction between Pd(II) solution and Ni foam. Both constant potential and constant current tests proved that TiC-Pd/Ni foam cathode performed remarkably higher activity for 2,4-dichlorobenzoic acid (2,4-DCBA) than Pd/Ni foam cathode, owing to the excellent conductivity of TiC and enhanced water dissociation over TiC-Pd/Ni foam cathode. Under the optimized reaction conditions of -0.85 V (vs Ag/AgCl), electrolyte of 10 mM and initial pH of 4, 99.8% of aqueous 2,4-DCBA (0.2 mM) was removed within 90 min. The removal process of the aqueous 2,4-DCBA obeyed first-order decay kinetic model. Over 86.3% of 2,4-DCBA can still be removed by TiC-Pd/Ni foam cathode in the fifth consecutive run within 120 min, which was much higher than that of Pd/Ni foam cathode (37.5%). Consequently, TiC-Pd/Ni foam cathode was a promising design for enhanced ECH activity and reduced operation cost.

13.
Chemosphere ; 195: 351-364, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29272803

ABSTRACT

Carbon-based nanomaterials, especially carbon nanotubes and graphene, have drawn wide attention in recent years as novel materials for environmental applications. Notably, the functionalized derivatives of carbon nanotubes and graphene with high surface area and adsorption sites are proposed to remove heavy metals via adsorption, addressing the pressing pollution of heavy metal. This critical revies assesses the recent development of various functionalized carbon nanotubes and graphene that are used to remove heavy metals from contaminated water, including the preparation and characterization methods of functionalized carbon nanotubes and graphene, their applications for heavy metal adsorption, effects of water chemistry on the adsorption capacity, and decontamination mechanism. Future research directions have also been proposed with the goal of further improving their adsorption performance, the feasibility of industrial applications, and better simulating adsorption mechanisms.


Subject(s)
Graphite/chemistry , Metals, Heavy/chemistry , Nanotubes, Carbon/chemistry , Water Purification/methods , Adsorption , Metals, Heavy/isolation & purification , Water Pollutants/isolation & purification
14.
Chemosphere ; 185: 452-461, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28715755

ABSTRACT

In this study, a comparative evaluation of synthetic FeS and natural pyrite was performed to investigate their adsorptive potentials toward Hg(II) in aqueous system. Characterization analyses such as BET, SEM and TEM suggested that FeS had porous structures with abundant active sites, while pyrite with a hard and smooth surface relied mainly on surface adsorption to immobilize Hg(II). Results of batch tests revealed that FeS offered much greater Hg(II) maximum adsorption capacity (769.2 mg/g) as compared to pyrite (9.9 mg/g). Both iron sulfides showed high removal efficiency (>96%) with the initial Hg(II) concentration (1 mg/L) at pH = 7.0 ± 0.1, and the effluent could meet the permissible effluent concentration (<50 µg/L). Condition experiments (such as pH, co-ions) proved that the adaptive capacity of FeS was significantly higher than that of pyrite. A pseudo-second-order kinetic model was better able to illustrate the sorption kinetics on both FeS and pyrite (R2 ≥ 0.9992). XRD and XPS analyses supported that precipitation, ion exchange and surface complexation were main reaction mechanisms involved in the adsorption process. In addition, it was also revealed that the structural changes of FeS before and after adsorption was much larger than pyrite. Findings from this study suggest FeS is a promising candidate for treatment of high-concentration Hg(II)-containing wastewater (<20 mg/L), while pyrite can be applied as a long-term adsorbing material in the immobilization of wastewater containing low Hg(II) concentration (<1 mg/L) due to its cost-effective property and local availability.


Subject(s)
Ferrous Compounds/chemistry , Iron/chemistry , Mercury/isolation & purification , Sulfides/chemistry , Adsorption , Chemical Precipitation , Hydrogen-Ion Concentration , Ion Exchange , Kinetics , Porosity , Solutions/chemistry , Water Pollutants, Chemical/isolation & purification
15.
Environ Sci Technol ; 51(13): 7599-7605, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28541678

ABSTRACT

Clarifying hydrogen evolution and identifying the active hydrogen species are crucial to the understanding of the electrocatalytic hydrodechlorination (EHDC) mechanism. Here, monodisperse palladium nanoparticles (Pd NPs) are used as a model catalyst to demonstrate the potential-dependent evolutions of three hydrogen species, including adsorbed atomic hydrogen (H*ads), absorbed atomic hydrogen (H*abs), and molecular hydrogen (H2) on Pd NPs, and then their effect on EHDC of 2,4-dichlorophenol (2,4-DCP). Our results show that H*ads, H*abs, and H2 all emerge at -0.65 V (vs Ag/AgCl) and have increased amounts at more negative potentials, except for H*ads that exhibits a reversed trend with the potential varying from -0.85 to -0.95 V. Overall, the concentrations of these three species evolve in an order of H*abs < H*ads < H2 in the potential range of -0.65 to -0.85 V, H*ads < H*abs < H2 in -0.85 to -1.00 V, and H*ads < H2 < H*abs in -1.00 to -1.10 V. By correlating the evolution of each hydrogen species with 2,4-DCP EHDC kinetics and efficiency, we find that H*ads is the active species, H*abs is inert, while H2 bubbles are detrimental to the EHDC reaction. Accordingly, for an efficient EHDC reaction, a moderate potential is desired to yield sufficient H*ads and limit H2 negative effect. Our work presents a systematic investigation on the reaction mechanism of EHDC on Pd catalysts, which should advance the application of EHDC technology in practical environmental remediation.


Subject(s)
Chlorophenols/chemistry , Nanoparticles/chemistry , Catalysis , Hydrogen , Palladium , Water
16.
Environ Monit Assess ; 189(4): 194, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28357720

ABSTRACT

Corrosion deposits formed within drinking water distribution systems deteriorate drinking water quality and resultantly cause public health consequences. In the present study, an attempt was made to investigate the concurrent conditions of corrosion scales and the drinking water quality in selected water supply schemes (WSS) in districts Chitral, Peshawar, and Abbottabad, northern Pakistan. Characterization analyses of the corrosion by-products revealed the presence of α-FeOOH, γ-FeOOH, Fe3O4, and SiO2 as major constituents with different proportions. The constituents of all the representative XRD peaks of Peshawar WSS were found insignificant as compared to other WSS, and the reason could be the variation of source water quality. Well-crystallized particles in SEM images indicated the formation of dense oxide layer on corrosion by-products. A wider asymmetric vibration peak of SiO2 appeared only in Chitral and Abbottabad WSS, which demonstrated higher siltation in the water source. One-way ANOVA analysis showed significant variations in pH, turbidity, TDS, K, Mg, PO4, Cl, and SO4 values, which revealed that these parameters differently contributed to the source water quality. Findings from this study suggested the implementation of proper corrosion prevention measures and the establishment of international collaboration for best corrosion practices, expertise, and developing standards.


Subject(s)
Water Quality , Water Supply/standards , Water/standards , Corrosion , Environmental Monitoring , Iron/chemistry , Iron Compounds/chemistry , Minerals/chemistry , Pakistan , Silicon Dioxide/chemistry
17.
Chemosphere ; 169: 23-31, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27855328

ABSTRACT

Spent mushroom compost (SMC), a spent mushroom substrate (SMS) derived compost, is always applied to agriculture land to enhance soil organic matter and nutrient contents. However, nitrogen, phosphate and organic matter contained in SMC can leach out and contaminate ground water during its application. In this study, biochars prepared under different pyrolytic temperatures (550 °C, 650 °C or 750 °C) from SMS were applied to soil as a nutrient conservation strategy. The resultant biochars were characterized for physical and mineralogical properties. Surface area and pore volume of biochars increased as temperature increased, while pore size decreased with increasing temperature. Calcite and quartz were evidenced by X-ray diffraction analysis in all biochars produced. Results of column leaching test suggested that mixed treatment of SMC and SMS-750-800 (prepared with the temperature for pyrolysis and activation was chosen as 750 °C and 800 °C, respectively) could reduce 43% of TN and 66% of CODCr in leachate as compared to chemical fertilizers and SMC, respectively. Furthermore, increasing dosage of SMS-750-800 from 1% to 5% would lead to 54% CODCr reduction in leachate, which confirmed its nutrient retention capability. Findings from this study suggested that combined application of SMC and SMS-based biochar was an applicable strategy for reducing TN and CODCr leaching.


Subject(s)
Agaricales , Charcoal/chemistry , Fertilizers , Agriculture , Nitrogen/analysis , Soil/chemistry , Temperature , Vegetables , X-Ray Diffraction
18.
Huan Jing Ke Xue ; 37(1): 397-402, 2016 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-27078983

ABSTRACT

Nutrition components and elements analysis of spent mushroom substrates/composts (SMS/SMC) during a cyclic utilization were performed to state the compositional variation during reutilization and composting process. Environmental risk assessment of heavy metals and other pollutants were also taken into consideration. The results showed that the water consumption during reutilization reached 13.8%; while the protein and polysaccharide contents increased by 32.9% and 20.4%, respectively, suggesting that SMS still had a lot of nutrients. After composting disposal, however, the protein and polysaccharide contents decreased by 50% and 79%, respectively, while the lignin, cellulose and hemicellulose contents didn't show a significant difference; the C/N ratio decreased; the total humic acid content increased by 18.6%, all of which means that the composting process made great contributions to organic degradation. The heavy metal analysis showed that As, Hg, Pb, Cd, Cr concentrations in organic compost met the requirement of limit standard (NY525-2012). In addition, the results of column leaching test showed that N, P and organics in both SMS and SMC had a possibility of leaching loss, and the accumulation of TN and COD in SMC leachate decreased by 15.0% and 62.8%, respectively, compared to SMS group.


Subject(s)
Agaricales , Soil/chemistry , Cellulose/analysis , Humic Substances/analysis , Lignin/analysis , Metals, Heavy/analysis , Polysaccharides/analysis , Proteins/analysis
19.
J Hazard Mater ; 286: 220-8, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25585269

ABSTRACT

In this study, a novel composite adsorbent (HBC-Fe3O4-MnO2) was synthesized by combining honeycomb briquette cinders (HBC) with Fe3O4 and MnO2 through a co-precipitation process. The purpose was to make the best use of the oxidative property of MnO2 and the adsorptive ability of magnetic Fe3O4 for enhanced As(III) and As(V) removal from aqueous solutions. Experimental results showed that the adsorption capacity of As(III) was observed to be much higher than As(V). The maximum adsorption capacity (2.16 mg/g) was achieved for As(III) by using HBC-Fe3O4-MnO2 (3:2) as compared to HBC-Fe3O4-MnO2 (2:1) and HBC-Fe3O4-MnO2 (1:1). The experimental data of As(V) adsorption fitted well with the Langmuir isotherm model, whereas As(III) data was described perfectly by Freundlich model. The pseudo-second-order kinetic model was fitted well for the entire adsorption process of As(III) and As(V) suggesting that the adsorption is a rate-controlling step. Aqueous solution pH was found to greatly affect the adsorption behavior. Furthermore, co-ions including HCO3(-) and PO4(3-) exhibited greater influence on arsenic removal efficiency, whereas Cl(-), NO3(-), SO4(2-) were found to have negligible effects on arsenic removal. Five consecutive adsorption-regeneration cycles confirmed that the adsorbent could be reusable for successive arsenic treatment and can be used in real treatment applications.


Subject(s)
Arsenic/isolation & purification , Ferrosoferric Oxide/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Oxidation-Reduction , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...