Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Anat Rec (Hoboken) ; 305(11): 3150-3160, 2022 11.
Article in English | MEDLINE | ID: mdl-35142076

ABSTRACT

Dietary habits exert significant selective pressures on anatomical structures in animals, leading to substantial morphological adaptations. Yet, the relationships between the mandible and diet are still unclear, raising issues for paleodietary reconstructions notably. To assess the impact of food hardness and size on morphological structures, we used an experimental baseline using a model based on the domestic pig, an omnivorous mammal with bunodont, thick-enameled dentition, and chewing movements similar to hominids. We hypothesized that the consumption of different types of seeds would result in substantial differences in the morphology of the mandible despite similar overall diets. The experiment was conducted on four groups of juvenile pigs fed with mixed cereal and soy flours. The control group received only flours. We supplemented the four others with either 10 hazelnuts, 30 hazelnuts, 30% barley seeds, or 20% corn kernels per day. We investigated the shape differences between the controlled-fed groups using three-dimensional geometric morphometrics. Our results provide strong evidence that the supplemental consumption of a significant amount of seeds for a short period (95 days) substantially modify the mandibular morphology of pigs. Our analyses suggest that this shape differentiation is due to the size of the seeds, requiring high and repeated bite force, rather than their hardness. These results provide new perspectives for the use of mandibular morphology as a proxy in paleodietary reconstructions complementing dental microwear textures analyses.


Subject(s)
Diet , Hominidae , Animals , Edible Grain/chemistry , Mammals , Mandible/anatomy & histology , Mastication , Swine
3.
Cortex ; 118: 262-274, 2019 09.
Article in English | MEDLINE | ID: mdl-31030897

ABSTRACT

To survive in complex and seasonal environments, primates are thought to rely upon cognitive capacities such as decision-making and episodic memory, which enable them to plan their daily foraging path. According to the Ecological Brain hypothesis, feeding ecology has driven the expansion of the brain to support the corresponding development of cognitive skills. Recent works in cognitive neurosciences indicate that cognitive operations such as decision-making or subjective evaluation (which are contextual and dependent upon episodic memory), relied critically upon a small part of the frontal lobe, often referred to as the ventromedial prefrontal cortex (VMPFC). Several authors suggested that this area might be important for foraging, but this has never been tested. In the present study, we quantified the relation between the size of the VMPFC (along with other cerebral measures: the whole brain, the gyrus rectus and the somatosensory cortex) and key socio-ecological variables in five primate species (Macaca mulatta, Macaca fuscata, Gorilla gorilla, Pan troglodytes and Homo sapiens). We hypothesized that the size of the VMPFC would be greater in primates with a large dietary spectrum and complex foraging strategies. We also hypothesized that the impact of feeding ecology would be stronger on this specific region than on other regions (somatosensory cortex) or on more global cerebral measures (e.g., whole brain). In line with these hypotheses, we found that all cerebral measures were more strongly related to feeding ecology than group size, a proxy for social complexity. As expected, the VMPFC volume is more precisely related to feeding ecology than the whole brain, and appears to be critically related to dietary quality. Thus, combining a comparative approach with predictions coming both from behavioral ecology and cognitive neurosciences, our study provides evidence that feeding ecology played a key role in the development of specific cognitive skills, which rely upon the expansion of a specific cortical area.


Subject(s)
Brain/anatomy & histology , Decision Making/physiology , Memory, Episodic , Prefrontal Cortex/anatomy & histology , Animals , Brain/physiology , Humans , Macaca , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...