Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806726

ABSTRACT

BACKGROUND: Intrinsic and extrinsic factors in the tumour microenvironment (TME) contribute to therapeutic resistance. Here we demonstrate that transforming growth factor (TGF)-ß1 produced in the TME increased drug resistance of neuroblastoma (NB) cells. METHODS: Human NB cell lines were tested in vitro for their sensitivity to Doxorubicin (DOX) and Etoposide (ETOP) in the presence of tumour-associated macrophages (TAM) and mesenchymal stromal cells/cancer-associated fibroblasts (MSC/CAF). These experiments were validated in xenotransplanted and primary tumour samples. RESULTS: Drug resistance was associated with an increased expression of efflux transporter and anti-apoptotic proteins. Upregulation was dependent on activation of nuclear factor (NF)-κB by TGF-ß-activated kinase (TAK1) and SMAD2. Resistance was reversed upon pharmacologic and genetic inhibitions of NF-κB, and TAK1/SMAD2. Interleukin-6, leukaemia inhibitory factor and oncostatin M were upregulated by this TGF-ß/TAK1/NF-κB/SMAD2 signalling pathway contributing to drug resistance via an autocrine loop activating STAT3. An analysis of xenotransplanted NB tumours revealed an increased presence of phospho (p)-NF-κB in tumours co-injected with MSC/CAF and TAM, and these tumours failed to respond to Etoposide but responded if treated with a TGF-ßR1/ALK5 inhibitor. Nuclear p-NF-κB was increased in patient-derived tumours rich in TME cells. CONCLUSIONS: The data provides a novel insight into a targetable mechanism of environment-mediated drug resistance.

2.
Oncoimmunology ; 11(1): 2146860, 2022.
Article in English | MEDLINE | ID: mdl-36479153

ABSTRACT

Tumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAF) and their precursor mesenchymal stromal cells (MSC) are often detected together in tumors, but how they cooperate is not well understood. Here, we show that TAM and CAF are the most abundant nonmalignant cells and are present together in untreated human neuroblastoma (NB) tumors that are also poorly infiltrated with T and natural killer (NK) cells. We then show that MSC and CAF-MSC harvested from NB tumors protected human monocytes (MN) from spontaneous apoptosis in an interleukin (IL)-6 dependent mechanism. The interactions of MN and MSC with NB cells resulted in a significant induction or increase in the expression of several pro-tumorigenic cytokines/chemokines (TGF-ß1, MCP-1, IL-6, IL-8, and IL-4) but not of anti-tumorigenic cytokines (TNF-α, IL-12) by MN or MSC, while also inducing cytokine expression in quiescent NB cells. We then identified a TGF-ß1/IL-6 pathway where TGF-ß1 stimulated the expression of IL-6 in NB cells and MSC, promoting TAM survival. Evidence for the contribution of TAM and MSC to the activation of this pathway was then provided in xenotransplanted NB tumors and patients with primary tumors by demonstrating a direct correlation between the presence of CAF and p-SMAD2 and p-STAT3. The data highlight a new mechanism of interaction between TAM and CAF supporting their pro-tumorigenic function in cancer.


Subject(s)
Fibroblasts , Interleukin-6 , Macrophages , Neuroblastoma , Transforming Growth Factor beta1 , Humans , Neuroblastoma/immunology , Fibroblasts/immunology , Macrophages/immunology , Animals
3.
Cancers (Basel) ; 12(11)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114328

ABSTRACT

The tumor microenvironment (TME) plays a critical role in tumor progression. Among its multiple components are cancer-associated fibroblasts (CAFs) that are the main suppliers of extracellular matrix molecules and important contributors to inflammation. As a source of growth factors, cytokines, chemokines and other regulatory molecules, they participate in cancer progression, metastasis, angiogenesis, immune cell reprogramming and therapeutic resistance. Nevertheless, their role is not fully understood, and is sometimes controversial due to their heterogeneity. CAFs are heterogeneous in their origin, phenotype, function and presence within tumors. As a result, strategies to target CAFs in cancer therapy have been hampered by the difficulties in better defining the various populations of CAFs and by the lack of clear recognition of their specific function in cancer progression. This review discusses how a greater understanding of the heterogeneous nature of CAFs could lead to better approaches aimed at their use or at their targeting in the treatment of cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...