Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 44(17): 3576-92, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-16007858

ABSTRACT

A spectrum-matching and look-up-table (LUT) methodology has been developed and evaluated to extract environmental information from remotely sensed hyperspectral imagery. The LUT methodology works as follows. First, a database of remote-sensing reflectance (Rrs) spectra corresponding to various water depths, bottom reflectance spectra, and water-column inherent optical properties (IOPs) is constructed using a special version of the HydroLight radiative transfer numerical model. Second, the measured Rrs spectrum for a particular image pixel is compared with each spectrum in the database, and the closest match to the image spectrum is found using a least-squares minimization. The environmental conditions in nature are then assumed to be the same as the input conditions that generated the closest matching HydroLight-generated database spectrum. The LUT methodology has been evaluated by application to an Ocean Portable Hyperspectral Imaging Low-Light Spectrometer image acquired near Lee Stocking Island, Bahamas, on 17 May 2000. The LUT-retrieved bottom depths were on average within 5% and 0.5 m of independently obtained acoustic depths. The LUT-retrieved bottom classification was in qualitative agreement with diver and video spot classification of bottom types, and the LUT-retrieved IOPs were consistent with IOPs measured at nearby times and locations.

2.
Opt Express ; 10(26): 1573-84, 2002 Dec 30.
Article in English | MEDLINE | ID: mdl-19461694

ABSTRACT

This study uses derivative spectroscopy to assess qualitative and quantitative information regarding seafloor types that can be extracted from hyperspectral remote sensing reflectance signals. Carbonate sediments with variable concentrations of microbial pigments were used as a model system. Reflectance signals measured directly over sediment bottoms were compared with remotely sensed data from the same sites collected using an airborne sensor. Absorption features associated with accessory pigments in the sediments were lost to the water column. However major sediment pigments, chlorophyll a and fucoxanthin, were identified in the remote sensing spectra and showed quantitative correlation with sediment pigment concentrations. Derivative spectra were also used to create a simple bathymetric algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...