Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(11): e0225760, 2019.
Article in English | MEDLINE | ID: mdl-31774879

ABSTRACT

Even though HIV-1 replication can be suppressed by combination antiretroviral therapy (cART) inflammatory processes still occur, contributing to comorbidities. Comorbidities are attributed to variety of factors, including HIV-1 mediated inflammation. Several HIV-1 proteins mediate central nervous system (CNS) inflammation, including Nef. Nef is an early HIV-1 protein, toxic to neurons and glia and is sufficient to cause learning impairment similar to some deficits observed in HIV-1 associated neurocognitive disorders. To determine whether hippocampal Nef expression by astrocytes contributes to comorbidities, specifically peripheral inflammation, we infused Sprague Dawley rats with GFP- (control) or Nef-transfected astrocytes into the right hippocampus. Brain, lung, and ileum were collected postmortem for the measurement of inflammatory markers. Increased blood-brain-barrier permeability and serum IL-1ß levels were detected in the Nef-treated rats. The lungs of Nef-treated rats demonstrated leukocyte infiltration, macrophage upregulation, and enhanced vascular permeability. Ileal tissue showed reactive follicular lymphoid hyperplasia, increased permeability and macrophage infiltration. The intracerebroventricular application of IL-1 receptor antagonist reduced infiltration of immune cells into ileum and lung, indicating the important role of IL-1ß in mediating the spread of inflammation from the brain to other tissues. This suggests that localized expression of a single viral protein, HIV-1 Nef, can contribute to a broader inflammatory response by upregulation of IL-1ß. Further, these results suggest that Nef contributes to the chronic inflammation seen in HIV patients, even in those whose viremia is controlled by cART.


Subject(s)
Astrocytes/transplantation , Blood-Brain Barrier/pathology , Hippocampus/pathology , Lung Diseases, Interstitial/etiology , Neurons/pathology , nef Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Cells, Cultured , Hippocampus/metabolism , Interleukin-1beta/metabolism , Lung Diseases, Interstitial/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley , nef Gene Products, Human Immunodeficiency Virus/genetics
2.
J Clin Cell Immunol ; 5(3): 1000227, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-25177525

ABSTRACT

BACKGROUND: Patients with Inflammatory Bowel Disease (IBD), most commonly Crohn's disease (CD) or ulcerative colitis (UC), suffer from chronic intestinal inflammation of unknown etiology. Increased proinflammatory macrophages (M1) have been documented in tissue from patients with CD. Anti-inflammatory macrophages (M2) may play a role in UC given the preponderance of Th2 cytokines in this variant of IBD. Animal and clinical studies have shown that the probiotic VSL#3 can ameliorate signs and symptoms of IBD. Although animal data suggests a modulatory effect on macrophage phenotype, the effect of VSL#3 on human macrophages remains unknown. OBJECTIVE: To determine the effect of the probiotic VSL#3 on the phenotype of polarized (M1/M2) and unpolarized (MΦ) human macrophages. METHODS: Human monocyte-derived macrophages, generated by culturing monocytes with M-CSF, were left unpolarized or were polarized towards an M1 or an M2 phenotype by culture with LPS and IFN-γ or IL-4, respectively, and were then cultured in the presence or absence of VSL#3 for 3 days. Changes in macrophage morphology were assessed. Cytokine and chemokine levels in supernatants were determined by multiplex assay. RESULTS: VSL#3 decreased the granuloma-like aggregates of M1 macrophages, increased fibroblast-like M2 macrophages, and decreased fibroblast-like MΦ macrophages. VSL#3 increased the secretion of IL-1ß, IL-6, IL-10, and G-CSF by M1, M2, and MΦ macrophages. VSL#3 exposure maintained the proinflammatory phenotype of M1 macrophages, sustaining IL-12 secretion, increasing IL-23 secretion, and decreasing MDC secretion. Both VSL#3-treated M2 and MΦ macrophages secreted higher levels of anti-inflammatory and pro-healing factors such as IL-1Ra, IL-13, EGF, FGF-2, TGF-α, and VEGF, as well as proinflammatory cytokines, including IL-12 and TNF-α. CONCLUSION: Under our experimental conditions VSL#3 induced a mixed proinflammatory and anti-inflammatory phenotype in polarized and unpolarized macrophages. This differential effect could explain why patients with CD do not respond to probiotic therapy as well as patients with UC.

SELECTION OF CITATIONS
SEARCH DETAIL
...