Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(5-1): 054603, 2024 May.
Article in English | MEDLINE | ID: mdl-38907388

ABSTRACT

We present numerical simulations on pairwise interactions between particles trapped at an isotropic-nematic liquid crystal (Iso-N) interface. The particles are subject to elastocapillary interactions arising from interfacial deformations and elastic distortions of the nematic phase. We use a recent model based on a phase-field approach [see Qiu et al., Phys. Rev. E 103, 022706 (2021)2470-004510.1103/PhysRevE.103.022706] to take into account the coupling between elastic and capillary phenomena. The pair potential is computed in a two-dimensional geometry for a range of particle separations and two anchoring configurations. The first configuration leads to the presence of an anchoring conflict at the three-phase contact line, whereas such a conflict does not exist for the second one. In the first case, the results show that significant interfacial deformations and downward particle displacements occur, resulting in sizable attractive capillary interactions able to overcome repulsive elastic forces at intermediate separations. The pair potential exhibits an equilibrium distance since elastic repulsions prevail at short range and prevent the clustering of particles. However, in the absence of any anchoring conflict, the interfacial deformations are very small and the capillary forces have a negligible contribution to the pair potential, which is fully repulsive and overwhelmed by elastic forces. These results suggest that the self-assembly properties of particles floating at Iso-N interfaces might be controlled by tuning anchoring conflicts.

2.
Phys Rev E ; 105(4-1): 044607, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590681

ABSTRACT

We present numerical simulations of a particle trapped at the isotropic-nematic liquid crystal (Iso-N) interface. We use our recent model, based on a phase-field approach [see Qiu et al., Phys. Rev. E 103, 022706 (2021)10.1103/PhysRevE.103.022706], to couple the capillary forces acting on the interface with the elastic stresses in the nematic phase along with topological defects. A range of floating configurations are first investigated as a function of the contact angle and various anchoring conditions at the fluid interface. The results show that the response of the system is driven by the existence of an anchoring conflict at the contact line. Substantial particle displacements and/or interfacial deformations may occur in this case even for moderate anchoring strengths. These findings highlight the coupling between elastic and capillary forces. In a second part, we compute drag forces exerted on a particle that moves along the Iso-N interface for several contact angles and a moderate Ericksen number. Because of the coupling between the velocity and order parameter fields, topological defects are swept downstream of the particle by the flow and sometimes escape from the particle or merge with the interface. We also find linear force-velocity laws, with drag forces at the Iso-N interface being slightly greater than their isotropic counterparts due to director distortions. We discuss these results in light of past studies on the behavior of particles being dragged in the bulk of a liquid crystal matrix.

3.
Eur Phys J E Soft Matter ; 44(3): 30, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33721135

ABSTRACT

We use dynamic numerical simulations to investigate the role of particle rotation in pairwise capillary interactions of particles trapped at a fluid interface. The fluid interface is modeled with a phase-field method which is coupled to the Navier-Stokes equations to solve for the flow dynamics. Numerical solutions are found using a finite element scheme in a bounded two-dimensional geometry. The interfacial deformations are caused by the buoyant weight of the particles, which are allowed to both translate and rotate due to the capillary and viscous forces and torques at play. The results show that the capillary attraction is faster between freely rotating particles than if particle rotation is inhibited, and the higher the viscosity mismatch, the greater the effect. To explain this result, we analyze the drag force exerted on the particles and find that the translational drag force on a rotating particle is always less than its non-rotating counterpart due to attenuated velocity gradients in the vicinity of the particle. We also find that the influence of interfacial deformations on particle rotation is minute.

4.
Soft Matter ; 13(19): 3649-3663, 2017 May 21.
Article in English | MEDLINE | ID: mdl-28447702

ABSTRACT

We report an experimental investigation of the structure of periodic patterns observed in the meniscus of free-standing smectic films. Combination of polarizing optical microscopy and phase shifting interferometry enabled us to obtain new information on the structure of the meniscus, and in particular, on the topography of the smectic-air interface. We investigate the profile of the undulations in the striped structure in the thin part of the meniscus, change of the stripe period with the meniscus thickness and subsequent transition into a two-dimensional structure. It is shown that the two-dimensional structure has an unusual complex profile of "egg-box" type. The striped texture occurs upon cooling from the nontilted smectic-A to the smectic-C* phase, whereas the two-dimensional pattern is present in both phases. We discuss the possible origin of the modulated structures, the role of the dislocations in the meniscus, the elasticity of smectic layers, and the mechanical stress induced by dislocations.

5.
Eur Phys J E Soft Matter ; 37(12): 124, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25577402

ABSTRACT

We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8). Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3) or flattened (k < 0.3) ellipsoids never come to rest, and permanently "dance" around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.

6.
Eur Phys J E Soft Matter ; 37(12): 125, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25577403

ABSTRACT

We report numerical calculations on the mechanical effects of light on micrometer-sized dielectric ellipsoids immersed in water. We used a simple two-dimensional ray-optics model to compute the radiation pressure forces and torques exerted on the object as a function of position and orientation within the laser beam. Integration of the equations of motion, written in the Stokes limit, yields the particle dynamics that we investigated for different aspect ratios k. Whether the beam is collimated or focused, the results show that above a critical aspect ratio k(C), the ellipsoids cannot be stably trapped on the beam axis; the particle never comes to rest and rather oscillates permanently in a back-and-forth motion involving both translation and rotation in the vicinity of the beam. Such oscillations are a direct evidence of the non-conservative character of optical forces. Conversely, stable trapping can be achieved for k < k(C) with the particle standing idle in a vertical position. These predictions are in very good qualitative agreement with experimental observations. The physical origin of the instability may be understood from the force and torque fields whose structures greatly depend on the ellipsoid aspect ratio and beam diameter. The oscillations arise from a non-linear coupling of the forces and torques and the torque amplitude was identified as the bifurcation control parameter. Interestingly, simulations predict that sustained oscillations can be suppressed through the use of two coaxial counterpropagating beams, which may be of interest whenever a static equilibrium is required as in basic force and torque measurements or technological applications.

7.
Phys Rev Lett ; 103(23): 238303, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-20366182

ABSTRACT

We experimentally study the behavior of micrometer-sized prolate ellipsoidal particles dispersed in a nematic liquid crystal. The latter is an aqueous solution of rodlike micelles. When embedded into such a solvent, ellipsoids with small enough aspect ratios aggregate to form anisotropic structures oriented at an angle with respect to the local background director (as already observed for spheres). This is, however, no longer the case when the aspect ratio reaches a well-defined value: above that value, the ellipsoids remain well dispersed and apparently do no interact with each other, even over very long periods of time (several months). Therefore, there exists a transition from an aggregated to a nonaggregated state as a function of aspect ratio and for a given particle concentration. This behavior has not been predicted so far and we put forward simple calculations to rationalize our observations.

8.
Nature ; 407(6804): 611-3, 2000 Oct 05.
Article in English | MEDLINE | ID: mdl-11034205

ABSTRACT

Some binary mixtures exist as a single phase at high temperatures and as two phases at lower temperatures; rapid cooling therefore induces phase separation that proceeds through the initial formation of small particles and subsequent growth and coarsening. In solid and liquid media, this process leads to growing particles with a range of sizes, which eventually separate to form a macroscopically distinct phase. Such behaviour is of particular interest in systems composed of an isotropic fluid and a liquid crystal, where the random distribution of liquid-crystal droplets in an isotropic polymer matrix may give rise to interesting electro-optical properties. Here we report that a binary mixture consisting of an isotropic fluid and a liquid crystal forming the continuous phase does not fully separate into two phases, but self-organizes into highly ordered arrays of monodisperse colloidal droplet chains. We find that the size and spatial organization of the droplets are controlled by the orientational elasticity of the liquid-crystal phase and the defects caused by droplets exceeding a critical size. We expect that our approach to forming monodisperse, spatially ordered droplets in liquid crystals will allow the controlled design of ordered composites that may have useful rheological and optical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...