Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 61(5): 49, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32460311

ABSTRACT

Purpose: The functional interaction between photoreceptors and retinal pigment epithelium (RPE) cells is essential for vision. Phagocytosis of photoreceptor outer segments (POSs) by the RPE follows a circadian pattern; however, it remains unknown whether other RPE processes follow a daily rhythm. Therefore, our aim was to identify RPE processes following a daily rhythm. Methods: Murine RPE was isolated at Zeitgeber time (ZT) 0, 2, 4, 9, 14, and 19 (n = 5 per time point), after which RNA was isolated and sequenced. Genes with a significant difference in expression between time points (P < 0.05) were subjected to EnrichR pathway analysis to identify daily rhythmic processes. Results: Pathway enrichment revealed 13 significantly enriched KEGG pathways (P < 0.01), including the metabolic pathway (P = 0.002821). Analysis of the metabolic pathway differentially expressed genes revealed that genes involved in adenosine triphosphate production, glycolysis, glycogenolysis, and glycerophospholipid were low at ZT0 (light onset) and high at ZT19 (night). Genes involved in fatty acid degradation and cholesterol synthesis were high at light onset and low at night. Conclusions: Our transcriptome data suggest that the highest energy demand of RPE cells is at night, whereas POS phagocytosis and degradation take place in the morning. Furthermore, we identified genes involved in fatty acid and glycerophospholipid synthesis that are upregulated at night, possibly playing a role in generating building blocks for membrane synthesis.


Subject(s)
Circadian Rhythm , Energy Metabolism/genetics , Gene Expression Regulation , Retinal Pigment Epithelium/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Random Allocation
2.
Exp Eye Res ; 193: 107985, 2020 04.
Article in English | MEDLINE | ID: mdl-32092287

ABSTRACT

Strong communication and interaction between the retinal pigment epithelium (RPE) and the photoreceptor (PR) cells is essential for vision. RPE cells are essential for supporting and maintaining PR cells by transporting nutrients, waste products and ions, and phagocytosing photoreceptor outer segments (POS). POS phagocytosis follows a circadian pattern, taking place in the morning in human, mice and other organisms. However, it remains unknown whether other RPE processes follow a daily rhythm. To study the daily rhythm of RPE cells, we isolated murine RPE cells at six different time points during a 24 h period, after which RNA was isolated and sequenced. Murine RPE flatmounts were isolated at four different time points to study daily rhythm in protein abundance and localisation. EnrichR pathway analysis resulted in 13 significantly-enriched KEGG pathways (p < 0.01) of which seven showed a large number of overlapping genes. Several genes were involved in intracellular trafficking, possibly playing a role in nutrient transport, POS phagocytosis or membrane protein trafficking, with different expression patterns during the day-night cycle. Other genes were involved in actin cytoskeleton building, remodelling and crosslinking and showed a high expression in the morning, suggesting actin cytoskeleton remodelling at this time point. Finally, tight junction proteins Cldn2 and Cldn4 showed a difference in RNA and protein expression and tight junction localisation over time. Our study suggests that several important processes in the RPE follow a day-night rhythm, including intracellular trafficking, and processes involving the actin cytoskeleton and tight junctions. The differential protein localisation of Cldn2 in the RPE during the day-night cycle suggest that Cldn2 may facilitate paracellular water and sodium transport during the day.


Subject(s)
Circadian Rhythm/physiology , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Pigment Epithelium/metabolism , Tight Junction Proteins/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal , Retinal Pigment Epithelium/cytology , Tight Junction Proteins/biosynthesis
3.
RNA Biol ; 16(11): 1547-1554, 2019 11.
Article in English | MEDLINE | ID: mdl-31304868

ABSTRACT

Oxidative stress is a feature of many common diseases. It leads to excessive formation and subsequent release of the mitochondrial metabolite succinate, which acts as a signalling molecule through binding the succinate receptor (SUCNR1). Recently, a potential role for SUCNR1 was proposed in age-related macular degeneration (AMD), a common cause of vision loss in the elderly associated with increased oxidative stress. Here, we evaluated the potential effect of genetic variants in SUCNR1 on its expression through differential micro-RNA (miRNA) binding to target mRNA, and investigated the relevance of altered SUCNR1 expression in AMD pathogenesis. We analysed common SUCNR1 SNPs for potential miRNA binding sites and identified rs13079080, located in the 3'-UTR and binding site for miRNA-4470. Both miRNA-4470 and SUCNR1 were found to be expressed in human retina. Moreover, using a luciferase reporter assay, a 60% decrease in activity was observed when miRNA-4470 was co-expressed with the C allele compared to the T allele of rs13079080. Finally, genotyping rs13079080 in an AMD case-control cohort revealed a protective effect of the TT genotype on AMD compared to the CC genotype (p = 0.007, odds ratio = 0.66). However, the association was not confirmed in the case-control study of the International AMD Genomics Consortium. Our study demonstrates that the T allele of rs13079080 in SUCNR1 disrupts a binding site for miRNA-4470, potentially increasing SUCNR1 expression and consequently increasing the capacity of sensing and dealing with oxidative stress. Therefore, it would be worthwhile assessing the relevance of rs13079080 in other oxidative stress-associated diseases in future studies.


Subject(s)
Macular Degeneration/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics , 3' Untranslated Regions , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Association Studies , Genotype , Humans , Male , MicroRNAs/metabolism , Oxidative Stress , Receptors, G-Protein-Coupled/metabolism , Retina/metabolism
4.
Biomolecules ; 8(4)2018 10 17.
Article in English | MEDLINE | ID: mdl-30336619

ABSTRACT

The European Academy for Biomedical Science (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European Research Institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, The Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim of promoting biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; and outreach activities stimulating the interaction between science and society. The first European PhD and Post-Doc Symposium, entitled "Breaking Down Complexity: Innovative Models and Techniques in Biomedicine", was hosted by the vibrant city of Barcelona. The scientific program of the conference was focused on the most recent advances and applications of modern techniques and models in biomedical research and covered a wide range of topics, from synthetic biology to translational medicine. Overall, the event was a great success, with more than 200 attendees from all over Europe actively participating in the symposium by presenting their research and exchanging ideas with their peers and world-renowned scientists.


Subject(s)
Biomedical Research/trends , Education, Medical/trends , Europe , Humans
5.
Biomolecules ; 8(3)2018 07 06.
Article in English | MEDLINE | ID: mdl-29986405

ABSTRACT

The European Academy for Biomedical Science (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European Research Institutes (Institute for Research in Biomedicine—IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences—RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research—NNF CPR, Denmark; European School of Molecular Medicine—SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim of promoting biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; and outreach activities stimulating the interaction between science and society. The first European PhD and Postdoc Symposium, entitled “Breaking Down Complexity: Innovative Models and Techniques in Biomedicine”, was hosted by the vibrant city of Barcelona. The scientific program of the conference was focused on the most recent advances and applications of modern techniques and models in biomedical research and covered a wide range of topics, from synthetic biology to translational medicine. Overall, the event was a great success, with more than 200 attendees from all over Europe actively participating in the symposium by presenting their research and exchanging ideas with their peers and world-renowned scientists.


Subject(s)
Biomedical Research/education , Biomedical Research/methods , Career Mobility , Europe , Humans , Synthetic Biology , Translational Research, Biomedical
6.
Med Sci (Basel) ; 6(2)2018 May 28.
Article in English | MEDLINE | ID: mdl-29843430

ABSTRACT

The EUROPEAN ACADEMY FOR BIOMEDICAL SCIENCE (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European Research Institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim of promoting biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; and outreach activities stimulating the interaction between science and society. The first European PhD and Postdoc Symposium, entitled "Breaking Down Complexity: Innovative Models and Techniques in Biomedicine", was hosted by the vibrant city of Barcelona. The scientific program of the conference was focused on the most recent advances and applications of modern techniques and models in biomedical research and covered a wide range of topics, from synthetic biology to translational medicine. Overall, the event was a great success, with more than 200 attendees from all over Europe actively participating in the symposium by presenting their research and exchanging ideas with their peers and world-renowned scientists.

7.
J Pers Med ; 8(2)2018 May 22.
Article in English | MEDLINE | ID: mdl-29786664

ABSTRACT

The EUROPEAN ACADEMY FOR BIOMEDICAL SCIENCE (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European research institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim to promote biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; outreach activities stimulating the interaction between science and society. The first European PhD and Postdoc Symposium, entitled "Breaking Down Complexity: Innovative models and techniques in biomedicine", was hosted by the vibrant city of Barcelona. The scientific program of the conference was focused on the most recent advances and applications of modern techniques and models in biomedical research and covered a wide range of topics, from synthetic biology to translational medicine. Overall, the event was a great success, with more than 200 attendees from all over Europe actively participating in the symposium by presenting their research and exchanging ideas with their peers and world-renowned scientists.

8.
Oncoimmunology ; 6(3): e1285991, 2017.
Article in English | MEDLINE | ID: mdl-28405517

ABSTRACT

Because of the potent graft-versus-tumor (GVT) effect, allogeneic stem cell transplantation (alloSCT) can be a curative therapy for hematological malignancies. However, relapse remains the most frequent cause of treatment failure, illustrating the necessity for development of adjuvant post-transplant therapies to boost GVT immunity. Dendritic cell (DC) vaccination is a promising strategy in this respect, in particular, where distinct biologic functions of naturally occurring DC subsets, i.e. myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), are harnessed. However, it is challenging to obtain high enough numbers of primary DC subsets from blood for immunotherapy due to their low frequencies. Therefore, we present here an ex vivo GMP-compliant cell culture protocol for generating different DC subsets from CD34+ hematopoietic stem and progenitor cells (HSPCs) of alloSCT donor origin. High numbers of BDCA1+ mDCs and pDCs could be generated, sufficient for multiple vaccination cycles. These HSPC-derived DC subsets were highly potent in inducing antitumor immune responses in vitro. Notably, HSPC-derived BDCA1+ mDCs were superior in eliciting T cell responses. They efficiently primed naïve T cells and robustly expanded patient-derived minor histocompatibility antigen (MiHA)-specific T cells. Though the HSPC-pDCs also efficiently induced T cell responses, they exhibited superior capacity in activating NK cells. pDC-primed NK cells highly upregulated TRAIL and possessed strong cytolytic capacity against tumor cells. Collectively, these findings indicate that HSPC-derived DC vaccines, comprising both mDCs and pDCs, may possess superior potential to boost antitumor immunity post alloSCT, due to their exceptional T cell and NK cell stimulatory capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...