Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(9): e0137682, 2015.
Article in English | MEDLINE | ID: mdl-26367005

ABSTRACT

One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.013.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and ß-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with ß-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0.


Subject(s)
Radioactive Waste , Sugar Acids/metabolism , Waste Management/methods , Archaea/genetics , Archaea/metabolism , Biodegradation, Environmental , Clostridium/genetics , Clostridium/metabolism , Gene Library , Hydrogen-Ion Concentration , Methane/metabolism , Phylogeny , RNA, Bacterial/chemistry , Sequence Analysis, RNA
2.
Environ Sci Process Impacts ; 16(10): 2227-36, 2014.
Article in English | MEDLINE | ID: mdl-25164562

ABSTRACT

Benzodiazepines are a large class of commonly-prescribed drugs used to treat a variety of clinical disorders. They have been shown to produce ecological effects at environmental concentrations, making understanding their fate in aquatic environments very important. In this study, uptake and biotransformations by riverine bacterio-plankton of the benzodiazepine, diazepam, and 2-amino-5-chlorobenzophenone, ACB (a photo-degradation product of diazepam and several other benzodiazepines), were investigated using batch microcosm incubations. These were conducted using water and bacterio-plankton populations from contrasting river catchments (Tamar and Mersey, UK), both in the presence and absence of a peptide, added as an alternative organic substrate. Incubations lasted 21 days, reflecting the expected water residence time in the catchments. In River Tamar water, 36% of diazepam (p < 0.001) was removed when the peptide was absent. In contrast, there was no removal of diazepam when the peptide was added, although the peptide itself was consumed. For ACB, 61% was removed in the absence of the peptide, and 84% in its presence (p < 0.001 in both cases). In River Mersey water, diazepam removal did not occur in the presence or absence of the peptide, with the latter again consumed, while ACB removal decreased from 44 to 22% with the peptide present. This suggests that bacterio-plankton from the Mersey water degraded the peptide in preference to both diazepam and ACB. Biotransformation products were not detected in any of the samples analysed but a significant increase in ammonium concentration (p < 0.038) was measured in incubations with ACB, confirming mineralization of the amine substituent. Sequential inoculation and incubation of Mersey and Tamar microcosms, for 5 periods of 21 days each, did not produce any evidence of increased ability of the microbial community to remove ACB, suggesting that an indigenous consortium was probably responsible for its metabolism. As ACB degradation was consistent, we propose that the aquatic photo-degradation of diazepam to ACB, followed by mineralization of ACB, is a primary removal pathway for these emerging contaminants. As ACB is photo-produced by several benzodiazepines, this pathway should be relevant for the removal of other benzodiazepines that enter the freshwater environment.


Subject(s)
Bacteria/metabolism , Biotransformation , Diazepam/metabolism , Plankton/metabolism , Rivers/microbiology , Water Pollutants, Chemical/metabolism , Benzophenones , Environmental Monitoring , Rivers/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...