Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; : e0092024, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874337

ABSTRACT

Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.

2.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766061

ABSTRACT

Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE: Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.

3.
Antonie Van Leeuwenhoek ; 117(1): 45, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424217

ABSTRACT

Strain AA17T was isolated from an apparently healthy fragment of Montipora capitata coral from the reef surrounding Moku o Lo'e in Kane'ohe Bay, O'ahu, Hawai'i, USA, and was taxonomically evaluated using a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain AA17T shared the greatest similarity with Aestuariibacter halophilus JC2043T (96.6%), and phylogenies based on 16S rRNA gene sequences grouped strain AA17T with members of the Aliiglaciecola, Aestuariibacter, Lacimicrobium, Marisediminitalea, Planctobacterium, and Saliniradius genera. To more precisely infer the taxonomy of strain AA17T, a phylogenomic analysis was conducted and indicated that strain AA17T formed a monophyletic clade with A. halophilus JC2043T, divergent from Aestuariibacter salexigens JC2042T and other related genera. As a result of monophyly and multiple genomic metrics of genus demarcation, strain AA17T and A. halophilus JC2043T comprise a distinct genus for which the name Fluctibacter gen. nov. is proposed. Based on a polyphasic characterisation and identifying differences in genomic and taxonomic data, strain AA17T represents a novel species, for which the name Fluctibacter corallii sp. nov. is proposed. The type strain is AA17T (= LMG 32603 T = NCTC 14664T). This work also supports the reclassification of A. halophilus as Fluctibacter halophilus comb. nov., which is the type species of the Fluctibacter genus. Genomic analyses also support the reclassification of Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica.


Subject(s)
Alteromonadaceae , Anthozoa , Fatty Acids , Animals , Fatty Acids/analysis , Hawaii , Bays , RNA, Ribosomal, 16S/genetics , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques
4.
Antonie Van Leeuwenhoek ; 116(2): 129-141, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36287289

ABSTRACT

Clade-based taxonomy has become a recognised means of classifying members of the family Vibrionaceae. A multilocus sequence analysis (MLSA) approach based on eight housekeeping genes can be used to infer phylogenetic relationships, which then groups species into monophyletic clades. Recent work on the Vibrionaceae clades added newly described species and updated existing relationships; the Nereis clade currently includes Vibrio nereis and Vibrio hepatarius. A publication characterising Vibrio japonicus as a novel species placed it within the Nereis clade, but this strain was not included in a recently published taxonomic update because a genome sequence was not available for phylogenetic assessment. To resolve this discrepancy and assess the taxonomic position of V. japonicus within the updated clades, we sequenced the complete genome of V. japonicus JCM 31412 T and conducted phylogenetic and genomic analyses of this clade. Vibrio japonicus remains within the Nereis clade and phylogenomic, average nucleotide identity (ANI), and average amino acid identity (AAI) analyses confirm this relationship. Additional genomic assessments on all Nereis clade members found gene clusters and inferred functionalities shared among the species. This work represents the first complete genome of a member of the Nereis clade and updates the clade-based taxonomy of the Vibrionaceae family.


Subject(s)
Genome, Bacterial , Vibrio , Sequence Analysis, DNA , Phylogeny , DNA, Bacterial/genetics , Vibrio/genetics , RNA, Ribosomal, 16S/genetics
5.
Arch Microbiol ; 204(12): 717, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36401660

ABSTRACT

Strain 5675061T was isolated from a deep-sea microbial mat near hydrothermal vents within the Axial Seamount caldera on the Juan de Fuca Ridge (NE Pacific Ocean) and was taxonomically evaluated using a polyphasic approach. Morphological and chemotaxonomic properties are consistent with characteristics of the genus Streptomyces: aerobic Gram-stain-positive filaments that form spores, L,L-diaminopimelic acid in whole-cell hydrolysates, and iso-C16:0 as the major fatty acid. Phylogenetic analysis, genomic, and biochemical comparisons show close evolutionary relatedness to Streptomyces lonarensis NCL716T, S. bohaiensis 11A07T, and S. otsuchiensis OTB305T but genomic relatedness indices identify strain 5675061T as a distinct species. Based on a polyphasic characterization, identifying differences in genomic and taxonomic data, strain 5675061T represents a novel species, for which the name Streptomyces spiramenti sp. nov. is proposed. The type strain is 5675061T (=LMG 31896T = DSM 111793T).


Subject(s)
Streptomyces , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition
6.
Antonie Van Leeuwenhoek ; 115(9): 1215-1228, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35920985

ABSTRACT

Strain OCN044T was isolated from the homogenised tissue and mucus of an apparently healthy Acropora cytherea coral fragment collected from the western reef terrace of Palmyra Atoll in the Northern Line Islands and was taxonomically evaluated with a polyphasic approach. The morphological and chemotaxonomic properties are consistent with characteristics of the genus Vibrio: Gram-stain-negative rods, oxidase- and catalase-positive, and motile by means of a polar flagellum. Strain OCN044T can be differentiated as a novel subspecies based on 21 differences among chemotaxonomic features (e.g., fatty acids percentages for C12:0 and C18:1 ω7c), enzymatic activities (e.g., DNase and cystine arylamidase), and carbon sources utilized (e.g., L-xylose and D-melezitose) from its nearest genetic relative. Phylogenetic analysis and genomic comparisons show close evolutionary relatedness to Vibrio tetraodonis A511T but the overall genomic relatedness indices identify strain OCN044T as a distinct subspecies. Based on a polyphasic characterisation, differences in genomic and taxonomic data, strain OCN044T represents a novel subspecies of V. tetraodonis A511T, for which the name Vibrio tetraodonis subsp. pristinus subsp. nov. is proposed. The type strain is OCN044T (= LMG 31895T = DSM 111778T).


Subject(s)
Anthozoa , Vibrio , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
J Exp Biol ; 223(Pt 22)2020 11 20.
Article in English | MEDLINE | ID: mdl-33037110

ABSTRACT

Oxidative stress, which occurs from an imbalance of reactive oxygen and nitrogen species (RONS) and both endogenous and exogenous antioxidants, promotes aging and underlies sex-specific differences in longevity and susceptibility to age-related neurodegeneration. Recent evidence suggests that curcumin, a yellow pigment derived from turmeric and shown to exhibit antioxidant properties as a RONS scavenger, influences the regulation of genetic elements in endogenous antioxidant pathways. To investigate the role of curcumin in sex-specific in vivo responses to oxidative stress, Drosophila were reared on media supplemented with 0.25, 2.5 or 25 mmol l-1 curcuminoids (consisting of curcumin, demethoxycurcumin and bisdemethoxycurcumin) and resistance to oxidative stress and neural parameters were assessed. High levels of curcuminoids exhibited two sex-specific effects: protection from hydrogen peroxide as an oxidative stressor and alterations in turning rate in an open field. Taken together, these results suggest that the influence of curcuminoids as antioxidants probably relies on changes in gene expression and that sexual dimorphism exists in the in vivo response to curcuminoids.


Subject(s)
Curcumin , Animals , Antioxidants , Curcumin/pharmacology , Drosophila melanogaster/genetics , Female , Male , Oxidative Stress , Reactive Oxygen Species
8.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32763929

ABSTRACT

The draft genome of Streptomyces sp. strain ventii, an environmental isolate recovered from deep-sea hydrothermal vents in the Pacific Ocean, is presented along with the resequenced draft genomes of the type strains Streptomyces bohaiensis 11A07 and Streptomyces lonarensis NCL 716.

9.
Microbiol Resour Announc ; 9(12)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32193232

ABSTRACT

Vibrio sp. strain OCN044 is a Gram-negative gammaproteobacterium found in marine environments. Presented here is the whole-draft genome sequence of nonpathogenic Vibrio sp. strain OCN044, isolated from a healthy Acropora cytherea colony off the western reef terrace of Palmyra Atoll.

SELECTION OF CITATIONS
SEARCH DETAIL
...