Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
N Engl J Med ; 369(25): 2391-2405, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24325359

ABSTRACT

BACKGROUND: Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS: We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS: Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS: Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with nonmutated JAK2. (Funded by the Kay Kendall Leukaemia Fund and others.).


Subject(s)
Calreticulin/genetics , Mutation , Myelodysplastic Syndromes/genetics , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics , Amino Acid Sequence , Bone Marrow Diseases/genetics , Calreticulin/analysis , Exons , Humans , Janus Kinase 2/genetics , Leukemia, Myeloid/genetics , Molecular Sequence Data , Neoplasms/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA
2.
Proc Natl Acad Sci U S A ; 105(47): 18501-6, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-19011094

ABSTRACT

Two types of blast colonies can be stimulated to develop in semisolid agar cultures of murine bone marrow cells. Typically, these are either multicentric colonies stimulated by stem cell factor (SCF) plus interleukin-6 (IL-6) or dispersed colonies stimulated by Flt3 ligand (FL) plus IL-6. Both types of blast colony-forming cells (BL-CFCs) can generate large numbers of lineage-committed granulocyte-macrophage progenitor cells and exhibit some capacity for self-generation and the formation of eosinophil and megakaryocyte progenitor cells. However, the two populations of BL-CFCs are largely distinct and partially separable by fluorescence-activated cell sorting and are distinguished by differing capacity to form granulocyte-committed progeny. Both types of BL-CFCs can generate dendritic cells and small numbers of lymphocytes but the FL-responsive BL-CFCs have a greater capacity to form both B and T lymphocytes. Both types of blast colonies offer remarkable opportunities to analyze multilineage commitment at a clonal level in vitro.


Subject(s)
Hematopoietic Stem Cells/cytology , Animals , B-Lymphocytes/cytology , Cell Differentiation , Cells, Cultured , Interleukin-6/physiology , Membrane Proteins/physiology , Mice , Mice, Inbred Strains , Stem Cell Factor/physiology , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...