Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 59(11): 2713-26, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24800752

ABSTRACT

The aim of this paper is to describe a new automatic method for compensation of metal-implant-induced segmentation errors in MR-based attenuation maps (MRMaps) and to evaluate the quantitative influence of those artifacts on the reconstructed PET activity concentration. The developed method uses a PET-based delineation of the patient contour to compensate metal-implant-caused signal voids in the MR scan that is segmented for PET attenuation correction. PET emission data of 13 patients with metal implants examined in a Philips Ingenuity PET/MR were reconstructed with the vendor-provided method for attenuation correction (MRMap(orig), PET(orig)) and additionally with a method for attenuation correction (MRMap(cor), PET(cor)) developed by our group. MRMaps produced by both methods were visually inspected for segmentation errors. The segmentation errors in MRMap(orig) were classified into four classes (L1 and L2 artifacts inside the lung and B1 and B2 artifacts inside the remaining body depending on the assigned attenuation coefficients). The average relative SUV differences (ε(rel)(av)) between PET(orig) and PET(cor) of all regions showing wrong attenuation coefficients in MRMap(orig) were calculated. Additionally, relative SUV(mean) differences (ε(rel)) of tracer accumulations in hot focal structures inside or in the vicinity of these regions were evaluated. MRMap(orig) showed erroneous attenuation coefficients inside the regions affected by metal artifacts and inside the patients' lung in all 13 cases. In MRMap(cor), all regions with metal artifacts, except for the sternum, were filled with the soft-tissue attenuation coefficient and the lung was correctly segmented in all patients. MRMap(cor) only showed small residual segmentation errors in eight patients. ε(rel)(av) (mean ± standard deviation) were: (-56 ± 3)% for B1, (-43 ± 4)% for B2, (21 ± 18)% for L1, (120 ± 47)% for L2 regions. ε(rel) (mean ± standard deviation) of hot focal structures were: (-52 ± 12)% in B1, (-45 ± 13)% in B2, (19 ± 19)% in L1, (51 ± 31)% in L2 regions. Consequently, metal-implant-induced artifacts severely disturb MR-based attenuation correction and SUV quantification in PET/MR. The developed algorithm is able to compensate for these artifacts and improves SUV quantification accuracy distinctly.


Subject(s)
Artifacts , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Metals , Positron-Emission Tomography/methods , Prostheses and Implants , Whole Body Imaging/methods , Algorithms , Automation , Humans , Neoplasms/diagnostic imaging
2.
Phys Med Biol ; 59(3): 561-77, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24434600

ABSTRACT

The aim of this study is the evaluation of on-the-fly volume of intersection computation for system's geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR(+) and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34-41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques.


Subject(s)
Imaging, Three-Dimensional/methods , Positron-Emission Tomography/methods , Aged , Algorithms , Esophageal Neoplasms/diagnostic imaging , Humans , Male , Phantoms, Imaging
3.
IEEE Trans Med Imaging ; 32(11): 2056-63, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24186268

ABSTRACT

UNLABELLED: The goal of this article is to quantify the influence of truncation artifacts in the magnetic resonance (MR)-based attenuation map (MRMap) on reconstructed positron emission tomography (PET) image volumes and to propose a new method for minimizing this influence. METHODS: PET data sets of 20 patients investigated in a Philips Ingenuity PET/MR were reconstructed with and without applying two different methods for truncation compensation (TC1 vendor-provided, TC2 newly developed). In this patient group, the extent of truncation artifacts and quality of the truncation compensation (TC) was assessed visually in the MRMaps. In three additional patients MRMaps generated by algorithm TC2 could be compared to the ground truth of transmission-based attenuation maps obtained with a Siemens ECAT HR(+) scanner. The influence of truncation on regional SUVs in lesions, other hot structures (bladder, kidney, myocardium) and the arms was assessed in suitable volume of interests (VOI). RESULTS: Truncation compensated MRMaps exhibited residual artifacts in the arms in 16 patients for algorithm TC1 and to a lesser extent in eight patients for algorithm TC2. Compared to the transmission-based attenuation maps algorithm TC2 slightly overestimated the size of the truncated arms by 0.3 cm in the radial direction. Without truncation compensation, VOIs located in the trunk showed an average SUVmax underestimation of less than 5.4% relative to the results obtained with TC2. Inside the patients' arms underestimations up to 46.5% were found. CONCLUSION: In the trunk, standardized uptake values (SUV) underestimations due to truncation artifacts in the MRMap are rather small. Inside the arms, severe SUV underestimations can occur. Therefore, reliable TC is mandatory and can be achieved by applying the newly developed algorithm TC2 which has yielded promising results so far. Implementation of the proposed method is straightforward and should be easily adaptable to other PET/MR systems.


Subject(s)
Artifacts , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Whole Body Imaging/methods , Humans , Neoplasms/pathology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...