Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(19): 8542-8553, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38682869

ABSTRACT

The adsorption of foulants on photocatalytic nanoparticles can suppress their reactivity in water treatment applications by scavenging reactive species at the photocatalyst surface, screening light, or competing for surface sites. These inhibitory effects are commonly modeled using the Langmuir-Hinshelwood model, assuming that adsorbed layer compositions follow Langmuirian (equilibrium) competitive adsorption. However, this assumption has not been evaluated in complex mixtures of foulants. This study evaluates the photoreactivity of titanium dioxide (TiO2) nanoparticles toward a target compound, phenol, in the presence of two classes of foulants ─ natural organic matter (NOM) and a protein, bovine serum albumin (BSA) ─ and mixtures of the two. Langmuir adsorption models predict that BSA should strongly influence the nanoparticle photoreactivity because of its higher adsorption affinity relative to phenol and NOM. However, model evaluation of the experimental phenol decay rates suggested that neither the phenol nor foulant surface coverages are governed by Langmuirian competitive adsorption. Rather, a reactivity model incorporating kinetic predictions of adsorbed layer compositions (favoring NOM adsorption) outperformed Langmuirian models in providing accurate, unbiased predictions of phenol degradation rates. This research emphasizes the importance of using first-principles models that account for adsorption kinetics when assumptions of equilibrium adsorption do not apply.


Subject(s)
Nanoparticles , Adsorption , Kinetics , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Titanium/chemistry
2.
Sci Total Environ ; 866: 161346, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36603637

ABSTRACT

Phosphate addition is commonly applied to remediate lead contaminated sites via the formation of lead phosphate particles with low solubility. However, the effects of natural organic matter (NOM) with different properties, as well as the contributions of specific interactions (particle-particle, particle-NOM, and NOM-NOM) in enhanced stabilization or flocculation of the particles, are not currently well understood. This study investigates the influence of two aquatic NOM and two soil or coal humic acid (HA) extracts on the aggregation behavior of lead phosphate particles and explores the controlling mechanisms. All types of NOM induced disaggregation and steric stabilization of the particles in the presence of Na+ (100 mM) or low (1 mM) Ca2+ concentrations, as well as at low NOM concentrations (1 mgC/L). However, for the soil and coal HA, a threshold at NOM concentrations of 10 mgC/L and high (3 mM) Ca2+ concentrations was observed where bridging flocculation (rather than steric stabilization) occurred. In situ attenuated total reflectance - Fourier transform infrared characterization confirmed adsorption of the soil and coal humic acid extracts (10 mgC/L) onto the surface of the lead phosphate particles in 3 mM Ca2+, whereas dynamic and static light scattering demonstrated extensive HA flocculation that dominated the overall scattered light intensities. These results imply that the accelerated aggregation was induced by a combination of HA adsorption and bridging flocculation by Ca2+. Overall, this research demonstrates that the type of NOM is critical to predict the colloidal stability of lead phosphate particles. Aquatic NOM stabilized the particles under all conditions evaluated, but soil or coal HA with higher molecular weight and aromaticity showed highly variable stabilization or flocculation behavior depending on the HA and Ca2+ concentrations available to adsorb to the particles and participate in bridging. These results provide new mechanistic insights on particle stabilization or destabilization by NOM.

3.
Chemosphere ; 319: 137992, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36720411

ABSTRACT

The poor colloidal stability of magnetite nanoparticles (MNPs) limits their mobility and application, so various organic coatings (OCs) were applied to MNPs. Here, a comparative study on the colloidal stability of MNPs coated with acetic (HAc) and polyacrylic acids (PAA) was conducted under varied pH (5.0-9.0) in the presence of different concentrations of cations and anions, as well as humic acid (HA). Comparing the effects of various cations and anions, the stability of both HAc/PAA-MNPs followed the order: Na+ > Ca2+and PO43- > SO42- > Cl-, which could be explained by their adsorption behaviors onto HAc/PAA-MNPs and the resulting surface charge changes. Under all conditions even with more anion adsorption onto HAc-MNPs (0.14-22.56 mg/g) than onto PAA-MNPs (0.04-18.34 mg/g), PAA-MNPs were more negatively charged than HAc-MNPs, as PAA has a lower pHIEP (2.6 ± 0.1) than that of HAc (3.7 ± 0.1). Neither the HAc nor PAA coatings were displaced by phosphate even at considerably high phosphate concentration. Compared with HAc-MNPs, the stability of PAA-MNPs was greatly improved under all studied conditions, which could be due to both stronger electrostatic and additional steric repulsion forces among PAA-MNPs. Besides, under all conditions, Derjaguin-Landau-Verwey-Overbeek (DLVO) explained well the aggregation kinetic of HAc-MNPs; while extended DLVO (EDLVO) successfully predict that of PAA-MNPs, indicating steric forces among PAA-MNPs. The aggregation of HAc/PAA-MNPs was all inhibited in varied electrolyte solutions by HA (2 mg C/L) addition. This study suggested that carboxyl coatings with higher molecular weights and pKa values could stabilize MNPs better due to stronger electrostatic and additional steric repulsion. However, in the presence of HA, these two forces were mainly controlled by adsorbed HA instead of the organic pre-coatings on MNPs.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Humic Substances/analysis , Magnetite Nanoparticles/chemistry , Electrolytes/chemistry , Cations , Phosphates , Hydrogen-Ion Concentration , Nanoparticles/chemistry
4.
J Control Release ; 352: 485-496, 2022 12.
Article in English | MEDLINE | ID: mdl-36280154

ABSTRACT

This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate. The bulk C6 release profile using AF4 was validated against conventional analysis of drug extracted from the NPs and complemented with high performance liquid chromatography - quadrupole time-of-flight (HPLC-QTOF) mass spectrometry analysis of oligomeric PLGA species. Interpretation of the bulk drug release profile was ambiguous, with several release models yielding reasonable fits. In contrast, the size-resolved release profiles from AF4 provided critical information to confidently establish the release mechanism. Specifically, the C6-loaded NPs exhibited size-independent release rate constants and no significant NP size or shape transformations, suggesting surface desorption rather than diffusion through the PLGA matrix or erosion. This conclusion was supported through comparative experimental evaluation of PLGA NPs carrying a fully entrapped drug, enrofloxacin, which showed size-dependent diffusive release, along with density functional theory (DFT) calculations indicating a higher adsorption affinity of C6 onto PLGA. In summary, the development of the size-resolved AF4 method and data analysis framework fulfills salient analytical gaps to determine drug localization and release mechanisms from nanomedicines.


Subject(s)
Nanoparticles , Polyglycolic Acid , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Lactic Acid/chemistry , Drug Liberation , Particle Size , Nanoparticles/chemistry , Drug Carriers/chemistry
5.
Sci Total Environ ; 831: 154976, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35378183

ABSTRACT

Magnetite nanoparticles (MNPs) with varied organic coatings (OCs) which improved their stability have broad environmental applications. However, the adsorbed amounts and layer thickness of varied OCs onto MNPs during the synthesis were generally not or poorly characterized, and their interactions with natural organic matter (NOM) were still in progress. In this study, acetic (HAc), citric (CA), and polyacrylic acid (PAA) were selected as model OCs, the adsorption behaviors of OCs on MNPs were characterized under varied aqueous C/Fe ratios, and the aggregation behaviors of MNPs with varied OCs (OC-MNPs) at neutral pH (7.0 ± 0.2) with NaCl (5-800 mM) in the presence/absence of NOM were systematically investigated. Under low aqueous C/Fe ratio, the adsorbed amounts of model OCs as -COOH/Fe ratio followed the order: CA ≈ PAA > > HAc. With high aqueous C/Fe ratio, the maximum adsorbed masses of OC-MNPs were similar. The adsorbed layer thicknesses of OC-MNPs were thoroughly characterized using three different methods, all showing that the adsorbed layer of PAA was thicker than that of CA and HAc. Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (EDLVO) calculations showed that electrostatic and van der Waals forces were dominant for CA-MNPs and HAc-MNPs stabilization; while steric repulsion played major roles in stabilizing PAA-MNPs, probably due to a thicker PAA layer. In the presence of NOM, stability behaviors of all OC-MNPs were similar, ascribing to the much greater amounts of NOM adsorbed than the OCs, causing greater steric repulsion. This study provides new mechanistic insights which could help better understand the effects of varied OCs on MNPs' colloidal stability.

6.
Water Res ; 214: 118200, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35228037

ABSTRACT

Phosphate addition is commonly applied as an effective method to remediate lead contaminated sites via formation of low solubility lead phosphate solids. However, subsequent transport of the lead phosphate particles may impact the effectiveness of this remediation strategy. Hence, this study investigates the mechanisms involved in the aggregation of lead phosphate particles and their deposition in sand columns as a function of typical water chemistry parameters. Clean bed filtration theory was evaluated to predict the particle deposition behavior, using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate particle-substrate interactions. The observed particle deposition was not predictable from the primary energy barrier in clean bed filtration models, even in simple monovalent background electrolyte (NaNO3), because weak deposition in a secondary energy minimum prevailed even at low ionic strength, and ripening occurred at ionic strengths of 12.5 mM or higher. For aged (aggregated) suspensions, straining also occurred at 12.5 mM or higher. Aggregation and deposition were further enhanced at low total P/Pb ratios (i.e., P/Pb = 1) and in the presence of divalent cations, such as Ca2+ (≥ 0.2 mM), which resulted in less negative particle surface potentials and weaker electrostatic repulsion forces. However, the presence of 5 mg C/L of humic acid induced strong steric or electrosteric repulsion, which hindered particle aggregation and deposition even in the presence of Ca2+. This study demonstrates the importance of myriad mechanisms in lead phosphate deposition and provides useful information for controlling water chemistry in phosphate applications for lead remediation.

7.
Chem Commun (Camb) ; 57(96): 12940-12943, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34761754

ABSTRACT

Nanoplastics are of rapidly emerging concern as ubiquitous environmental pollutants. However, fate and transport assessments are currently hindered by a need for new analytical methods that can selectively quantify nanoplastics in environmental matrices. This study presents the first proof of principle to hyphenate asymmetric flow field-flow fractionation (AF4) with total organic carbon (TOC) detection for nanoplastics analysis, as evaluated on mixtures of multimodal polystyrene nanoplastics in the presence of dissolved organic matter and clay colloids. The AF4-TOC method enables more robust, size-resolved quantification of nanoplastics over other AF4 detection modes, including UV-vis, refractive index, and fluorescence tagging. This method development can fill a critical gap in analytical methodology for environmental nanoplastics research.


Subject(s)
Carbon/analysis , Environmental Pollutants/analysis , Nanoparticles/chemistry
8.
J Control Release ; 338: 410-421, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34453956

ABSTRACT

Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to quantify release profiles of fluorescent drugs from polymeric NPs, specifically poly(lactic-co-glycolic acid) NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to conventional measurements requiring separation of the NPs and dissolved drugs (typically by dialysis) prior to quantification, AF4 provides in situ removal of unincorporated drugs, while the judicious combination of online FLD and UV detection selectively provides the entrapped drug and PLGA NP concentrations, respectively, and hence the drug loading. NP size and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering (DLS, MALS) detectors. The AF4 and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 94%) of unincorporated (burst release) drug at three temperatures spanning the glass transition temperature (Tg ≈ 33 °C) of the NPs. The AF4 method clearly captured the temperature dependence of the drug release relative to Tg (from no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish differences in the extent or rate of release of the entrapped drug because of interferences from the burst release, as well as the dialysis lag time, as supported through a diffusion model and validation experiments on purified NPs with low burst release. Finally, the multi-detector AF4 analysis yielded unique size-dependent release profiles across the entire NP size distribution, with smaller NPs showing faster release consistent with radial diffusion from the NPs. Overall, this study demonstrates the novel application and advantages of multi-detector AF4 methods, particularly AF4-FLD, to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.


Subject(s)
Fractionation, Field Flow , Nanoparticles , Drug Liberation , Particle Size , Renal Dialysis
9.
Environ Sci Technol ; 55(8): 4638-4647, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33760589

ABSTRACT

Iron hydroxides are important scavengers for dissolved chromium (Cr) via coprecipitation processes; however, the influences of organic matter (OM) on Cr sequestration in Fe/Cr-OM ternary systems and the stability of the coprecipitates are not well understood. Here, Fe/Cr-OM coprecipitation was conducted at pH 3, and Cr hydroxide was undersaturated. Acetic acid (HAc), poly(acrylic acid) (PAA), and Suwannee River natural organic matter (SRNOM) were selected as model OMs, which showed different complexation capabilities with Fe/Cr ions and Fe/Cr hydroxide particles. HAc had no significant effect on the coprecipitation, as the monodentate carboxyl ligand in HAc did not favor complexation with dissolved Fe/Cr ions or Fe/Cr hydroxide nanoparticles. Contrarily, PAA and SRNOM with polydentate carboxyl ligand had strong complexation with Fe/Cr ions and Fe/Cr hydroxide nanoparticles, leading to significant amounts of PAA/SRNOM sequestered in the coprecipitates, which caused the structural disorder and fast aggregation of the coprecipitates. In comparison with that of PAA, preferential complexation of Cr ions with SRNOM resulted in higher Cr/Fe ratios in the coprecipitates. This study advances the fundamental understanding of Fe/Cr-OM coprecipitation and mechanisms controlling the composition and stability of the coprecipitates, which is essential for successful Cr remediation and removal in both natural and engineered settings.


Subject(s)
Chromium , Hydroxides , Ferric Compounds , Iron
10.
J Hazard Mater ; 414: 125454, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33677317

ABSTRACT

Poor bioavailability of antibiotics, toxicity, and development of antibiotic-resistant bacteria jeopardize antibiotic treatments. To circumvent these issues, drug delivery using nanocarriers are highlighted to secure the future of antibiotic treatments. This work investigated application of nanocarriers, to prevent and treat bacterial infection, presenting minimal toxicity to the IPEC-J2 cell line. To accomplish this, polymer-based nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and lignin-graft-PLGA (LNP) loaded with enrofloxacin (ENFLX) were synthesized, yielding spherical particles with average sizes of 111.8 ± 0.6 nm (PLGA) and 117.4 ± 0.9 nm (LNP). The releases of ENFLX from PLGA and LNP were modeled by a theoretical diffusion model considering both the NP and dialysis diffusion barriers for drug release. Biocompatible concentrations of ENFLX, enrofloxacin loaded PLGA(Enflx) and LNP(Enflx) were determined based on examination of bacterial inhibition, toxicity, and ROS generation. Biocompatible concentrations were used for treatment of higher- and lower-level infections in IPEC-J2 cells. Prevention of bacterial infection by LNP(Enflx) was enhanced more than 50% compared to ENFLX at lower-level infection. At higher-level infection, PLGA(Enflx) and LNP(Enflx) demonstrated 25% higher prevention of bacteria growth compared to ENFLX alone. The superior treatment achieved by the nanocarried drug is accredited to particle uptake by endocytosis and slow release of the drug intracellularly, preventing rapid bacterial growth inside the cells.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli O157 , Nanoparticles , Drug Carriers , Enrofloxacin , Lactic Acid , Particle Size , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer
11.
Environ Sci Technol ; 54(11): 6761-6770, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32250111

ABSTRACT

Ferrihydrite nanoparticles (Fh NPs) are ubiquitous in natural environments. However, their colloidal stability, and fate and transport behavior are difficult to predict in the presence of heterogeneous natural organic matter (NOM) mixtures. Here, we investigated the adsorption and aggregation behavior of Fh NPs exposed to NOM fractions with different molecular weights (MW). The NOM fraction with MW < 3 kDa destabilized the NPs, resulting in accelerated aggregation even at high C/Fe mass ratios, whereas higher MW NOM fractions imparted better colloidal stability with increasing MW and C/Fe ratio. Despite differences in the functional group composition of the bulk (dissolved) NOM fractions, all NOM fractions produced similar adsorbed layer compositions on the NPs, suggesting minimal contribution of chemical properties to the distinctive aggregation behavior. Rather, the higher adsorbed mass and larger size of the higher MW fractions were key factors in stabilizing the NPs through steric repulsion, whereas the lowest MW fraction had low adsorbed mass and was unable to counter electrostatic patch-charge attraction when the NPs are positively charged. This mechanistic understanding helps us predict the transport and fate of Fh NPs and the associated contaminants in natural environments with varying NOM compositions.


Subject(s)
Nanoparticles , Adsorption , Ferric Compounds , Humic Substances/analysis , Molecular Weight , Static Electricity
12.
ACS Appl Bio Mater ; 2(12): 5779-5789, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-35021571

ABSTRACT

This paper studies the selective adsorption and dewetting processes of various biomodifiers with respect to siliceous surfaces to determine dominant moisture damage mechanisms in bitumen doped with biomodifiers. Accordingly, it introduces four different biomodifiers made from various biomasses while explaining their differential effects on moisture susceptibility of bitumen when they are introduced to bitumen as a modifier to make commonly used biomodified binders. The biomodified binders studied here are made from extracts of biomass: wood pellets, miscanthus, corn stover, and animal waste. The moisture effect on biomodified bitumen was evaluated through contact angle measurement followed by molecular-level binding energy based on density functional theory (DFT). The change of contact angle between each biomodified bitumen and a silica surface when exposed to water was used as an indicator of the propensity for dewetting. The biomodifiers from animal waste showed the least change, followed by corn stover, wood pellet, and miscanthus. This aligns with our results of in situ Fourier transform infrared analysis, which showed that the biomodifier from miscanthus has the lowest adsorption affinity, while the one from animal waste has the highest adsorption onto siliceous stones. The higher adsorption efficiency of animal-based biomodifier is also verified by DFT-based molecular modeling, showing that the lipid and protein contents of animal waste, containing highly polar small compounds, exhibit a better adsorption to silica nanoparticles compared to carbohydrate of terrestrial plants.

13.
Environ Sci Technol ; 52(24): 14158-14168, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30462496

ABSTRACT

Engineered nanoparticles (NPs) will obtain macromolecular coatings in environmental systems, changing their subsequent interactions. The matrix complexity inherent in natural waters and wastewaters greatly complicates prediction of the corona formation. Here, we investigate corona formation on titanium dioxide (TiO2) NPs from mixtures of natural organic matter (NOM) and a protein, bovine serum albumin (BSA), to thoroughly probe the role of mixture interactions in the adsorption process. Fundamentally different coronas were observed under different NP exposure conditions and time scales. In mixtures of NOM and protein, the corona composition was kinetically determined, and the species initially coadsorbed but were ultimately limited to monolayers. On the contrary, sequential exposure of the NPs to pure solutions of NOM and protein resulted in extensive multilayer formation. The intermolecular complexation between NOM and BSA in solution and at the NP surface was the key mechanism controlling these distinctive adsorption behaviors, as determined by size exclusion chromatography (SEC) and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Overall, this study demonstrates that dynamic intermolecular interactions and the history of the NP surface must be considered together to predict corona formation on NPs in complex environmental media.


Subject(s)
Nanoparticles , Titanium , Adsorption , Serum Albumin, Bovine
14.
Article in English | MEDLINE | ID: mdl-31093329

ABSTRACT

The impact and behavior of engineered nanomaterials (ENMs) entering the environment is an important issue due to their growing use in consumer and agricultural products. Their mobility and fate in the environment are heavily impacted by their interactions with natural particle components of saturated sediments and soils. In this study, functionalized gold nanoparticles (AuNPs - used as model ENMs) were spiked into complex solid-containing media (standard soils and estuarine sediment in moderately hard water). AuNPs were characterized in the colloidal extract (< 1 µm) following centrifugal separation of the non-colloidal phase, using different analytical techniques including asymmetric-flow field-flow fractionation and single particle inductively coupled plasma mass spectrometry. Attachment of functionalized AuNPs to the soil particles did not significantly depend on their concentration or surface coating (citrate, bPEI, PVP, PEG). Similarly, UV degradation of coatings did not substantially alter their recovery. Conversely, the presence of natural organic matter (NOM) is a key factor in their adhesion to matrix particles, by decreasing the predicted influence of native surface chemistry and functional coatings. A kinetic experiment performed over 48 h showed that attachment to soil colloids is rapid and that hetero-aggregation is dominant. These results suggest that transport of ENMs away from the point of discharge (or entry) could be limited in soils and sediments, but additional experiments under more realistic and dynamic field conditions would be necessary to confirm this more generally. Transport properties may also differ substantially in matrices where NOM is largely absent or otherwise sequestered or when dissolution of ENMs is an important factor.

15.
Article in English | MEDLINE | ID: mdl-31080619

ABSTRACT

Polymeric coatings are commonly applied to impart functionality and colloidal stability to engineered nanoparticles. In natural environments, transformations of the coating can modify the particle transport behavior, but the mechanisms and outcomes of these transformations have not yet been thoroughly evaluated. This study investigates the photo-transformations of polyvinylpyrrolidone (PVP) coatings on gold nanoparticles (AuNPs) under ultraviolet (UV) irradiation, representing light exposure in surface waters or other sunlit environments, and the impact on the AuNP colloidal stability. Multiple orthogonal characterization methods were applied to interrogate UV-induced transformations and their consequences. Rapid oxidation of the PVP coating occurred upon UV exposure. The transformed PVP largely persisted on the AuNP surface, albeit in a collapsed polymer layer around the AuNP surface. This transformation resulted in drastically diminished colloidal stability of the AuNPs, consistent with loss of steric stabilization. While the residual coating modified the interaction of the AuNPs with calcium counterions, it did not prevent subsequent stabilization by humic acid. This study demonstrates the importance of both chemical and physical coating transformations on nanoparticles, and hence the need for orthogonal and complementary characterization methods to fully characterize the coating transformations. Finally, the specific transformations of the PVP-coated AuNPs investigated here are discussed more broadly with respect to generalizability to other polymer-coated NPs and the implications for their fate in sunlit or other reactive environments.

16.
Environ Sci Technol ; 49(4): 2188-98, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25611369

ABSTRACT

Engineered nanoparticles (NPs) released into natural environments will interact with natural organic matter (NOM) or humic substances, which will change their fate and transport behavior. Quantitative predictions of the effects of NOM are difficult because of its heterogeneity and variability. Here, the effects of six types of NOM and molecular weight fractions of each on the aggregation of citrate-stabilized gold NPs are investigated. Correlations of NP aggregation rates with electrophoretic mobility and the molecular weight distribution and chemical attributes of NOM (including UV absorptivity or aromaticity, functional group content, and fluorescence) are assessed. In general, the >100 kg/mol components provide better stability than lower molecular weight components for each type of NOM, and they contribute to the stabilizing effect of the unfractionated NOM even in small proportions. In many cases, unfractionated NOM provided better stability than its separated components, indicating a synergistic effect between the high and low molecular weight fractions for NP stabilization. Weight-averaged molecular weight was the best single explanatory variable for NP aggregation rates across all NOM types and molecular weight fractions. NP aggregation showed poorer correlation with UV absorptivity, but the exponential slope of the UV-vis absorbance spectrum was a better surrogate for molecular weight. Functional group data (including reduced sulfur and total nitrogen content) were explored as possible secondary parameters to explain the strong stabilizing effect of a low molecular weight Pony Lake fulvic acid sample to the gold NPs. These results can inform future correlations and measurement requirements to predict NP attachment in the presence of NOM.


Subject(s)
Chemical Engineering/methods , Electrolytes/chemistry , Gold/chemistry , Humic Substances/analysis , Metal Nanoparticles/chemistry , Benzopyrans/chemistry , Citric Acid , Electrophoretic Mobility Shift Assay , Molecular Weight
17.
Environ Sci Technol ; 47(9): 4245-54, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23550560

ABSTRACT

The complexity of natural organic matter (NOM) motivates determination of how specific components in a NOM mixture interact with and affect nanoparticle (NP) behavior. The effects of two Suwannee River NOM fractions (separated by a 100,000 g/mol ultrafiltration membrane) on gold NP aggregation are compared. The weight-average molecular weight, Mw, for the unfractionated NOM was 23,300 g/mol, determined by size exclusion chromatography with multiangle light scattering. The NOM was comprised of ~1.8 wt % of >100,000 g/mol retentate (NOMr, Mw = 691,000 g/mol) and 98 wt % of filtrate (NOMf, Mw = 12,800 g/mol). Ten ppm of NOMr provided significantly better NP stability against aggregation than 10 ppm of NOMf in 100 mM NaCl due to steric effects. In the unfractionated NOM, the relative importance of the two components was concentration-dependent. For a low concentration of unfractionated NOM (10 ppm), both fractions contributed to the NOM effects; for a high concentration (560 ppm), NP stability was controlled by the small amount (10 ppm) of NOMr present, rather than the higher amount (550 ppm) of NOMf. Therefore, large humic aggregates in a heterogeneous NOM sample can have disproportionately strong effects, and characterization of Mw distributions (rather than average Mw) may be required to explain NOM effects on NP behavior.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Organic Chemicals/chemistry , Chromatography, Gel , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Molecular Weight , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
18.
Langmuir ; 28(28): 10334-47, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22708677

ABSTRACT

Soft particle electrokinetic models have been used to determine adsorbed nonionic polymer and polyelectrolyte layer properties on nanoparticles or colloids by fitting electrophoretic mobility data. Ohshima first established the formalism for these models and provided analytical approximations ( Ohshima, H. Adv. Colloid Interface Sci.1995, 62, 189 ). More recently, exact numerical solutions have been developed, which account for polarization and relaxation effects and require fewer assumptions on the particle and soft layer properties. This paper characterizes statistical uncertainty in the polyelectrolyte layer charge density, layer thickness, and permeability (Brinkman screening length) obtained from fitting data to either the analytical or numerical electrokinetic models. Various combinations of particle core and polymer layer properties are investigated to determine the range of systems for which this analysis can provide a solution with reasonably small uncertainty bounds, particularly for layer thickness. Identifiability of layer thickness in the analytical model ranges from poor confidence for cases with thick, highly charged coatings, to good confidence for cases with thin, low-charged coatings. Identifiability is similar for the numerical model, except that sensitivity is improved at very high charge and permeability, where polarization and relaxation effects are significant. For some poorly identifiable cases, parameter reduction can reduce collinearity to improve identifiability. Analysis of experimental data yielded results consistent with expectations from the simulated theoretical cases. Identifiability of layer charge density and permeability is also evaluated. Guidelines are suggested for evaluation of statistical confidence in polymer and polyelectrolyte layer parameters determined by application of the soft particle electrokinetic theory.


Subject(s)
Polymers/analysis , Colloids/chemistry , Electrochemistry , Electrolytes/analysis , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...