Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Faraday Discuss ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832470

ABSTRACT

Peptide asparaginyl ligases (PALs) hold significant potential in protein bioconjugation due to their excellent kinetic properties and broad substrate compatibility. However, realizing their full potential in biocatalytic applications requires precise control of their activity. Inspired by nature, we aimed to compartmentalize a representative PAL, OaAEP1-C247A, within protein containers to create artificial organelles with substrate sorting capability. Two encapsulation approaches were explored using engineered lumazine synthases (AaLS). The initial strategy involved tagging the PAL with a super-positively charged GFP(+36) for encapsulation into the super-negatively charged AaLS-13 variant, but it resulted in undesired truncation of the enzyme. The second approach involved genetic fusion of the OaAEP1-C247A with a circularly permutated AaLS variant (cpAaLS) and its co-production with AaLS-13, which successfully enabled compartmentalization of the PAL within a patch-work protein cage. Although the caged PAL retained its activity, it was significantly reduced compared to the free enzyme (∼30-40-fold), likely caused by issues related to OaAEP1-C247A stability and folding. Nevertheless, these findings demonstrated the feasibility of the AaLS encapsulation approach and encourage further optimization in the design of peptide-ligating artificial organelles in E. coli, aiming for a more effective and stable system for protein modifications.

2.
Circ Cardiovasc Imaging ; 17(6): e016596, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868952

ABSTRACT

BACKGROUND: Mental stress-induced myocardial ischemia (MSIMI) is associated with adverse cardiovascular outcomes in individuals with coronary artery disease, but the mechanisms underlying this phenomenon are unknown. We examined the relationship between stress-induced autonomic dysfunction, measured by low heart rate variability (HRV) in response to stress, and MSIMI in patients with stable coronary artery disease. We hypothesized that stress-induced autonomic dysfunction is associated with higher odds of MSIMI. METHODS: In 735 participants with stable coronary artery disease, we measured high- and low-frequency HRV in 5-minute intervals before and during a standardized laboratory-based speech stressor using Holter monitoring. HRV at rest and stress were categorized into low HRV (first quartile) versus high HRV (second to fourth quartiles); the low category was used as an indicator of autonomic dysfunction. Multivariable logistic regression models were used to examine the association of autonomic dysfunction with MSIMI. RESULTS: The mean age was 58 (SD, ±10) years, 35% were women, 44% were Black participants, and 16% developed MSIMI. Compared with high HRV during stress, low HRV during stress (both high and low frequencies) was associated with higher odds of MSIMI after adjusting for demographic and clinical factors (odds ratio for high-frequency HRV, 2.1 [95% CI, 1.3-3.3]; odds ratio for low-frequency HRV, 2.1 [95% CI, 1.3-3.3]). Low-frequency HRV at rest was also associated with MSIMI but with slightly reduced effect estimates. CONCLUSIONS: In individuals with coronary artery disease, mental stress-induced autonomic dysfunction may be a mechanism implicated in the causal pathway of MSIMI.


Subject(s)
Autonomic Nervous System , Coronary Artery Disease , Electrocardiography, Ambulatory , Heart Rate , Myocardial Ischemia , Stress, Psychological , Humans , Female , Male , Middle Aged , Coronary Artery Disease/physiopathology , Coronary Artery Disease/complications , Coronary Artery Disease/psychology , Heart Rate/physiology , Stress, Psychological/complications , Stress, Psychological/physiopathology , Autonomic Nervous System/physiopathology , Myocardial Ischemia/physiopathology , Myocardial Ischemia/complications , Myocardial Ischemia/diagnosis , Aged , Risk Factors , Autonomic Nervous System Diseases/physiopathology , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System Diseases/etiology
3.
Int J Infect Dis ; 146: 107121, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823622

ABSTRACT

OBJECTIVES: To investigate multi-dose and timings of COVID-19 vaccines in preventing antenatal infection. DESIGN: Prospective observational study investigating primary vaccinations, boosters, antenatal COVID-19 infections, neutralizing antibody (Nab) durability, and cross-reactivity to Delta and Omicron variants of concern (VOCs). RESULTS: Ninety-eight patients completed primary vaccination prepregnancy (29.6%) and antenatally (63.3%), 24.2% of whom had antenatal COVID-19, while 7.1% were unvaccinated (28.6% had antenatal COVID-19). None had severe COVID-19. Prepregnancy vaccination resulted in vaccination-to-infection delay of 23.3 weeks, which extended to 45.2 weeks with a booster, compared to 16.9 weeks following antenatal vaccination (P < 0.001). Infections occurred at 26.2 weeks gestation in women vaccinated prepregnancy compared to 36.2 weeks gestation in those vaccinated during pregnancy (P < 0.007). The risk of COVID-19 infection was higher without antenatal vaccination (hazard ratio [HR] 14.6, P = 0.05) and after prepregnancy vaccination without a booster (HR 10.4, P = 0.002). Antenatal vaccinations initially led to high Nab levels, with mild waning but subsequent rebound. Significant Nab enhancement occurred with a third-trimester booster. Maternal-neonatal Nab transfer was efficient (transfer ratio >1), and cross-reactivity to VOCs was observed. CONCLUSION: Completing vaccination during any trimester delays COVID-19 infection and maintains effective neutralizing activity throughout pregnancy, with robust cross-reactivity to VOCs and efficient maternal-neonatal transfer.

4.
Angew Chem Int Ed Engl ; 63(22): e202403098, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38545954

ABSTRACT

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.


Subject(s)
Biocatalysis , Genetic Code , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Protein Engineering , Lysine/analogs & derivatives , Lysine/chemistry , Lysine/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
5.
ACS Bio Med Chem Au ; 4(1): 68-76, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38404743

ABSTRACT

Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 µM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.

6.
J Cardiothorac Vasc Anesth ; 38(3): 683-690, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148266

ABSTRACT

OBJECTIVES: Sternotomy pain is common after cardiac surgery. The deep parasternal intercostal plane (DPIP) block is a novel technique that provides analgesia to the anterior chest wall. The aim of this study was to investigate the analgesic effect of bilateral DPIP blocks on intraoperative pain control in cardiac surgery. DESIGN: This is a double-blinded, prospective randomized controlled trial (Oct 2020-Dec 2022). SETTINGS: This study was conducted in a single institution, which is an academic university hospital. PARTICIPANTS: Eighty-six elective cardiac surgical patients with median sternotomy were recruited. INTERVENTIONS: Patients were randomly divided into DPIP or control group. Either 20ml 0.25% levobupivacaine or 0.9% normal saline was injected for the DPIP under ultrasound guidance after induction of general anaesthesia. MEASUREMENTS AND MAIN RESULTS: The primary outcome was intraoperative opioids consumption and hemodynamic changes at sternotomy. Secondary outcomes included postoperative morphine consumption, postoperative pain and time to tracheal extubation. Intraoperative opioids requirement was reduced from a median (IQR) intravenous morphine equivalence of 21.4mg (13.8-24.3mg) in control group to 9.5mg (7.3-11.2mg) in the DPIP group (P<0.001). Hemodynamic parameters were more stable in DPIP group at sternotomy, as evidenced by lower percentage increase in systolic, diastolic and mean arterial blood pressure from baseline. No difference was observed in time to tracheal extubation, postoperative morphine consumption, postoperative pain score and spirometry. CONCLUSIONS: Bilateral DPIP block provides effective intraoperative analgesia and opioid-sparing. It may be included as part of the multimodal analgesia for enhanced recovery in cardiac surgery.


Subject(s)
Cardiac Surgical Procedures , Iopanoic Acid/analogs & derivatives , Nerve Block , Humans , Sternotomy/adverse effects , Prospective Studies , Nerve Block/methods , Cardiac Surgical Procedures/methods , Pain, Postoperative/diagnosis , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control , Analgesics, Opioid , Morphine
7.
Methods Enzymol ; 690: 501-540, 2023.
Article in English | MEDLINE | ID: mdl-37858539

ABSTRACT

A variant originated from Oldenlandia affinis asparaginyl ligase, OaAEP1-C247A, has emerged as an ideal tool for protein labeling. However, its preparation was laborious and time-consuming. It is recombinantly produced as a zymogen, requiring acid activation and four chromatographic steps; despite these extensive steps, the catalytically active enzyme exhibited only moderate purity. Here, we report a novel preparation protocol, in which the cap and catalytically active core domains are produced as separate entities. The active enzyme can be obtained in two chromatographic steps, immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC), with no acid activation required, thereby shortening the purification procedure from at least 2 days to less than 6 h. In addition to the original C247A mutation which enhanced reaction with various amino nucleophiles, an extra D29E mutation was introduced to prevent self-cleavage, which led to noticeable improvements in homogeneity and activity of the enzyme. Indeed, the resulting "split AEP" (i.e., core domain of OaAEP1-D29E/C247A) exhibited improved catalytic efficiency constant (kcat/KM) that was found to be ∼3-fold higher than that of the original acid-activated counterpart (OaAEP1-C247A). Furthermore, we described a protein labeling protocol that couples the enzymatic reaction with an irreversible chemical transformation, thereby enabling high conversion of labeled protein with a lowered amount of reagent. Precisely, an alternative Asn-Cys-Leu (NCL) recognition sequence was used for substrate recognition. As the byproduct contains an N-terminal cysteine, it can be transformed into an inert 1,2 aminothiol motif by reacting with formylphenyl boronic acid (FPBA). Finally, the opportunities and challenges associated with the use of asparaginyl ligase are discussed.


Subject(s)
Cysteine Endopeptidases , Proteins , Catalysis , Ligases
8.
Clin Infect Dis ; 77(11): 1504-1510, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37539715

ABSTRACT

BACKGROUND: Although comorbidities are risk factors for recurrent Clostridioides difficile infection (rCDI), many clinical trials exclude patients with medical conditions such as malignancy or immunosuppression. In a phase 3, double-blind, placebo-controlled, randomized trial (ECOSPOR III), fecal microbiota spores, live (VOWST, Seres Therapeutics; hereafter "VOS," formerly SER-109), an oral microbiota therapeutic, significantly reduced the risk of rCDI at week 8. We evaluated the efficacy of VOS compared with placebo in patients with comorbidities and other risk factors for rCDI. METHODS: Adults with rCDI were randomized to receive VOS or placebo (4 capsules daily for 3 days) following standard-of-care antibiotics. In this post hoc analysis, the rate of rCDI through week 8 was assessed in VOS-treated participants compared with placebo for subgroups including (i) Charlson comorbidity index (CCI) score category (0, 1-2, 3-4, ≥5); (ii) baseline creatinine clearance (<30, 30-50, >50 to 80, or >80 mL/minute); (iii) number of CDI episodes, inclusive of the qualifying episode (3 and ≥4); (iv) exposure to non-CDI-targeted antibiotics after dosing; and (v) acid-suppressing medication use at baseline. RESULTS: Of 281 participants screened, 182 were randomized (59.9% female; mean age, 65.5 years). Comorbidities were common with a mean overall baseline age-adjusted CCI score of 4.1 (4.1 in the VOS arm and 4.2 in the placebo arm). Across all subgroups analyzed, VOS-treated participants had a lower relative risk of recurrence compared with placebo. CONCLUSIONS: In this post hoc analysis, VOS reduced the risk of rCDI compared with placebo, regardless of baseline characteristics, concomitant medications, or comorbidities.


Subject(s)
Clostridioides difficile , Clostridium Infections , Microbiota , Adult , Humans , Female , Aged , Male , Prevalence , Anti-Bacterial Agents/therapeutic use , Clostridium Infections/drug therapy , Recurrence
9.
Commun Chem ; 6(1): 154, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464011

ABSTRACT

Tryptophan is frequently found on the surface of membrane-associated proteins that interact with the lipid membrane. However, because of their multifaceted interactions, it is difficult to pinpoint the structure-activity relationship of each tryptophan residue. Here, we describe the use of racemic protein crystallography to probe dedicated tryptophan interactions of a model tryptophan-rich bacteriocin aureocin A53 (AucA) by inclusion and/or exclusion of potential ligands. In the presence of tetrahedral anions that are isosteric to the head group of phospholipids, distinct tryptophan H-bond networks were revealed. H-bond donation by W40 was critical for antibacterial activity, as its substitution by 1-methyltryptophan resulted in substantial loss of activity against bacterial clinical isolates. Meanwhile, exclusion of tetrahedral ions revealed that W3 partakes in formation of a dimeric interface, thus suggesting that AucA is dimeric in solution and dissociated to interact with the phosphate head group in the presence of the lipid membrane. Based on these findings, we could predict the tryptophan residue responsible for activity as well as the oligomeric state of a distant homologue lacticin Q (48%).

10.
Epigenomics ; 15(5): 283-292, 2023 03.
Article in English | MEDLINE | ID: mdl-37212177

ABSTRACT

This work examines differences in chromatin accessibility, methylation, and response to DNA hypomethylating agents between mismatch repair-deficient and non-mismatch repair-deficient endometrial cancer. Next-generation sequencing of a stage 1B, grade 2 endometrioid endometrial cancer tumor revealed microsatellite instability and a variant of unknown significance in POLE along with global and MLH1 hypermethylation. Inhibition of viability by decitabine in the study and comparison tumors was minimal, as shown by an inhibitory effect of 0 and 17.9, respectively. Conversely, the inhibitory effect of azacitidine on the study tumor was more pronounced, at 72.8 versus 41.2. In vitro, mismatch repair-deficient endometrial cancer with MLH1 hypermethylation respond better to DNA methyltransferase inhibition by azacytidine (DNA/RNA inhibition), than to decitabine (DNA-only inhibition). Additional large studies are needed to substantiate our findings.


Subject(s)
Endometrial Neoplasms , Epigenomics , Female , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , DNA Mismatch Repair , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , DNA Methylation
11.
Clin Epigenetics ; 15(1): 71, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120552

ABSTRACT

BACKGROUND: Clear cell renal cell cancer (ccRCC), the 8th leading cause of cancer-related death in the US, is challenging to treat due to high level intratumoral heterogeneity (ITH) and the paucity of druggable driver mutations. CcRCC is unusual for its high frequency of epigenetic regulator mutations, such as the SETD2 histone H3 lysine 36 trimethylase (H3K36me3), and low frequency of traditional cancer driver mutations. In this work, we examined epigenetic level ITH and defined its relationships with pathologic features, aspects of tumor biology, and SETD2 mutations. RESULTS: A multi-region sampling approach coupled with EPIC DNA methylation arrays was conducted on a cohort of normal kidney and ccRCC. ITH was assessed using DNA methylation (5mC) and CNV-based entropy and Euclidian distances. We found elevated 5mC heterogeneity and entropy in ccRCC relative to normal kidney. Variable CpGs are highly enriched in enhancer regions. Using intra-class correlation coefficient analysis, we identified CpGs that segregate tumor regions according to clinical phenotypes related to tumor aggressiveness. SETD2 wild-type tumors overall possess greater 5mC and copy number ITH than SETD2 mutant tumor regions, suggesting SETD2 loss contributes to a distinct epigenome. Finally, coupling our regional data with TCGA, we identified a 5mC signature that links regions within a primary tumor with metastatic potential. CONCLUSION: Taken together, our results reveal marked levels of epigenetic ITH in ccRCC that are linked to clinically relevant tumor phenotypes and could translate into novel epigenetic biomarkers.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , DNA Methylation , Kidney/metabolism , Epigenesis, Genetic , Mutation
12.
Org Biomol Chem ; 21(5): 966-969, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36628630

ABSTRACT

The synthesis of proteins by solid-phase chemical ligation (SPCL) suffers from the paucity of linkers that can be cleaved under mild conditions. Here, we deployed a spontaneous nickel-assisted cleavage (SNAC) tag, known to undergo spontaneous cleavage in the presence of nickel(II), as a linker for C-to-N SPCL.


Subject(s)
Amino Acids , Nickel , Amino Acids/chemistry , Peptides/chemistry , Proteins , Solid-Phase Synthesis Techniques
13.
Sci Rep ; 13(1): 1267, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690710

ABSTRACT

Agitation is a commonly encountered stress for enzymes during all stages of production and application, but investigations that aim to improve their tolerance using topological engineering have yet to be reported. Here, the plastic-degrading enzyme IsPETase was cyclized in a range of topologies including a cyclic monomer, cyclic dimer and catenane using SpyTag/SpyCatcher technologies, and their tolerance towards different stresses including mechanical agitation was investigated. The cyclic dimer and catenane topologies were less susceptible to agitation-induced inactivation resulting in enhancement of polyethylene terephthalate (PET) degradation. While contrary to conventional belief, cyclic topologies did not improve tolerance of IsPETase towards heat or proteolytic treatment, the close proximity of active sites in the dimeric and catenane variants was found to enhance PET conversion into small soluble products. Together, these findings illustrate that it is worthwhile to explore the topology engineering of enzymes used in heterogeneous catalysis as it improves factors that are often overlooked in homogeneous catalysis studies.


Subject(s)
Catenanes , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Plastics , Hydrolases/metabolism , Hot Temperature
14.
Chembiochem ; 24(4): e202200537, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36278392

ABSTRACT

Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.


Subject(s)
Peptides , Proteins , Crystallography, X-Ray , Proteins/chemistry , Peptides/chemistry , Stereoisomerism , Cell Surface Display Techniques
15.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36094518

ABSTRACT

Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/ß (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.


Subject(s)
Job Syndrome , TYK2 Kinase , Humans , Interferon-gamma/metabolism , Interleukin-23 , Job Syndrome/genetics , TYK2 Kinase/deficiency , TYK2 Kinase/genetics , TYK2 Kinase/metabolism
16.
Inorg Chem ; 61(35): 13662-13666, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35905506

ABSTRACT

Azophosphines (Ar-N═N-PR2) were prepared from N-aryl-N'-(trimethylsilyl)diazenes (Ar-N═N-SiMe3) and R2PCl by Me3SiCl elimination or oxidation of phosphinohydrazines (Ar-NH-NH-PR2) by 2,5-dialkyl-1,4-benzoquinones. Azophosphines underwent 1,3-dipolar cycloaddition with cyclooctyne and dimethylacetylene dicarboxylate to give N-heterocyclic iminophosphoranes (NHIPs), which are structurally similar to cyclic (alkyl)(amino)carbenes. The cycloaddition reaction is compatible with various phosphorus atom substituents including phenyl (NHIP-1,4,6), isopropyl (NHIP-2), cyclohexyl (NHIP-3), and dimethylamino (NHIP-5) groups. The pKBH+ values of the NHIPs in acetonitrile range from 13.13 to 23.14. On the basis of the Huynh electronic parameter, NHIP-1 and NHIP-2 have σ-donor strengths comparable with that of 1,8-diazabicyclo[5.4.0]undec-7-ene. NHIP-1 underwent facile 1,2-addition with pentafluoropyridine to form a rare fluorophosphorane. The treatment of NHIP-1 with triphenylsilane resulted in P-N bond cleavage, accompanied by the reduction of phosphorus(V) to phosphorus(III). A homoleptic, cationic CuI-NHIP-1 complex was also prepared. The potential utility of π-donating NHIPs was demonstrated by the stabilization of a reactive iminoborane (Cl-B≡N-SiMe3). The facile scalable synthesis, tunability of steric demands, and basicity of NHIPs suggest that this new heterocycle class may find a wide range of applications in synthetic chemistry.

17.
A A Pract ; 16(7): e01596, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35822867

ABSTRACT

Ultrasound-guided (USG) spinal injection is generally performed using a paramedian sagittal oblique scan, with the patient in the lateral decubitus position, and the spinal needle inserted in-plane from the nondependent side. This report evaluated the feasibility of performing USG spinal injection, using an alternative transverse interspinous scan with in-plane needle insertion, a transverse in-plane dependent (TIPD) technique, in 30 adult patients undergoing elective surgery under spinal anesthesia. Dural puncture was successfully achieved in 29 of 30 (96.6%) patients with 2 (1-3) attempts in 5 (4-8) minutes using the TIPD technique. Multiple interspinous osteophytes accounted for technical failure in 1 patient.


Subject(s)
Anesthesia, Spinal , Ultrasonography, Interventional , Adult , Anesthesia, Spinal/methods , Humans , Injections, Spinal , Needles , Ultrasonography , Ultrasonography, Interventional/methods
18.
Nat Chem ; 14(8): 928-934, 2022 08.
Article in English | MEDLINE | ID: mdl-35697930

ABSTRACT

Phosphorus mononitride (PN) only has a fleeting existence on Earth, and molecular precursors for the release of this molecule under mild conditions in solution have remained elusive. Here we report the synthesis of an anthracene-based precursor-an anthracene moiety featuring an azidophosphine bridge across its central ring-that dissociates into dinitrogen, anthracene and P≡N in solution with a first-order half-life of roughly 30 min at room temperature. Heated under reduced pressure, this azidophosphine-anthracene precursor decomposes in an explosive fashion at around 42 °C, as demonstrated in a molecular-beam mass spectrometry study. The precursor is also shown to serve as a PN transfer reagent in the synthesis of an Fe-NP coordination complex, through ligand exchange with its Fe-N2 counterpart. The terminal N-bonded complex was found to be energetically preferred, compared to its P-bonded linkage isomer, owing to a significant covalent Fe-pnictogen bond character and an associated less unfavourable Pauli repulsion in the metal-ligand interaction.


Subject(s)
Metals , Phosphorus , Anthracenes , Ligands , Models, Molecular , Phosphorus/chemistry
19.
Chem Sci ; 13(17): 4779-4787, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35655887

ABSTRACT

While there has been emerging interest in designing new enzymes to solve practical challenges, computer-based options to redesign catalytically active proteins are rather limited. Here, a rational QM/MM molecular dynamics strategy based on combining the best electrostatic properties of enzymes with activity in a common reaction is presented. The computational protocol has been applied to the re-design of the protein scaffold of an existing promiscuous esterase from Bacillus subtilis Bs2 to enhance its secondary amidase activity. After the alignment of Bs2 with a non-homologous amidase Candida antarctica lipase B (CALB) within rotation quaternions, a relevant spatial aspartate residue of the latter was transferred to the former as a means to favor the electrostatics of transition state formation, where a clear separation of charges takes place. Deep computational insights, however, revealed a significant conformational change caused by the amino acid replacement, provoking a shift in the pK a of the inserted aspartate and counteracting the anticipated catalytic effect. This prediction was experimentally confirmed with a 1.3-fold increase in activity. The good agreement between theoretical and experimental results, as well as the linear correlation between the electrostatic properties and the activation energy barriers, suggest that the presented computational-based investigation can transform in an enzyme engineering approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...