Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 42021.
Article in English | MEDLINE | ID: mdl-35291552

ABSTRACT

Hard X-ray spectroscopy is an element specific probe of electronic state, but signals are weak and require intense light to study low concentration samples. Free electron laser facilities offer the highest intensity X-rays of any available light source. The light produced at such facilities is stochastic, with spikey, broadband spectra that change drastically from shot to shot. Here, using aqueous ferrocyanide, we show that the resonant X-ray emission (RXES) spectrum can be inferred by correlating for each shot the fluorescence intensity from the sample with spectra of the fluctuating, self-amplified spontaneous emission (SASE) source. We obtain resolved narrow and chemically rich information in core-to-valence transitions of the pre-edge region at the Fe K-edge. Our approach avoids monochromatization, provides higher photon flux to the sample, and allows non-resonant signals like elastic scattering to be simultaneously recorded. The spectra obtained match well with spectra measured using a monochromator. We also show that inaccurate measurements of the stochastic light spectra reduce the measurement efficiency of our approach.

2.
Commun Chem ; 4(1): 84, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-36697621

ABSTRACT

Hard X-ray spectroscopy is an element specific probe of electronic state, but signals are weak and require intense light to study low concentration samples. Free electron laser facilities offer the highest intensity X-rays of any available light source. The light produced at such facilities is stochastic, with spikey, broadband spectra that change drastically from shot to shot. Here, using aqueous ferrocyanide, we show that the resonant X-ray emission (RXES) spectrum can be inferred by correlating for each shot the fluorescence intensity from the sample with spectra of the fluctuating, self-amplified spontaneous emission (SASE) source. We obtain resolved narrow and chemically rich information in core-to-valence transitions of the pre-edge region at the Fe K-edge. Our approach avoids monochromatization, provides higher photon flux to the sample, and allows non-resonant signals like elastic scattering to be simultaneously recorded. The spectra obtained match well with spectra measured using a monochromator. We also show that inaccurate measurements of the stochastic light spectra reduce the measurement efficiency of our approach.

3.
J Chem Phys ; 153(14): 144203, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33086821

ABSTRACT

Stark spectroscopy, which measures changes in the linear absorption of a sample in the presence of an external DC electric field, is a powerful experimental tool for probing the existence of charge-transfer (CT) states in photosynthetic systems. CT states often have small transition dipole moments, making them insensitive to other spectroscopic methods, but are particularly sensitive to Stark spectroscopy due to their large permanent dipole moment. In a previous study, we demonstrated a new experimental method, two-dimensional electronic Stark spectroscopy (2DESS), which combines two-dimensional electronic spectroscopy (2DES) and Stark spectroscopy. In order to understand how the presence of CT states manifest in 2DESS, here, we perform computational modeling and calculations of 2DESS as well as 2DES and Stark spectra, studying a photosynthetic dimer inspired by the photosystem II reaction center. We identify specific cases where qualitatively different sets of system parameters produce similar Stark and 2DES spectra but significantly different 2DESS spectra, showing the potential for 2DESS to aid in identifying CT states and their coupling to excitonic states.


Subject(s)
Chlorophyll A/chemistry , Spectrum Analysis/methods , Computer Simulation , Dimerization , Thermodynamics
4.
Phys Chem Chem Phys ; 22(5): 2660-2666, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31441480

ABSTRACT

Femtosecond-resolved Extended X-ray Absorption Fine Structure (EXAFS) measurements of solvated transition metal complexes are successfully implemented at the X-ray Free Electron Laser LCLS. Benchmark experiments on [Fe(terpy)2]2+ in solution show a signal-to-noise ratio on the order of 500, comparable to typical 100 ps-resolution synchrotron measurements. In the few femtoseconds after photoexcitation, we observe the EXAFS fingerprints of a short-lived (∼100 fs) intermediate as well as those of a vibrationally hot long-lived (∼ns) excited state.

5.
J Synchrotron Radiat ; 26(Pt 5): 1716-1724, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490163

ABSTRACT

This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.

6.
J Phys Chem Lett ; 8(3): 679-683, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28099020

ABSTRACT

Characterizing ultrafast energy and charge transfer is important for understanding a wide range of systems, from natural photosynthetic complexes to organic photovoltaics. Distinguishing the kinetic processes of energy transfer and charge separation in such systems is challenging due to the lack of clear spectral signatures of charge transfer states, which are typically nonradiative. Stark spectroscopy has proven to be a valuable method for uncovering charge transfer states. Here we extend the dimensionality of Stark spectroscopy to perform two-dimensional electronic Stark spectroscopy. We demonstrate the method on TIPS-pentacene in 3-methylpentane at 77 K. The additional frequency dimension of two-dimensional Stark spectroscopy promises to enable the identification of charge transfer states, their coupling to other charge transfer and exciton states, and their involvement in charge separation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...