Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Biomech Biomed Engin ; 26(1): 113-125, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35297711

ABSTRACT

Recent advances in diagnostic neuroradiological imaging, allowed the detection of unruptured intracranial aneurysms (IAs). The shape - irregular or multilobular - of the aneurysmal dome, is considered as a possible rupture risk factor, independently of the size, the location and patient medical background. Disturbed blood flow fields in particular is thought to play a key role in IAs progression. However, there is an absence of widely-used hemodynamic indices to quantify the extent of a multi-directional disturbed flow. We simulated blood flow in twelve patient-specific anterior circulation unruptured intracranial aneurysms with daughter blebs utilizing the spectral/hp element framework Nektar++. We simulated three cardiac cycles using a volumetric flow rate waveform while we considered blood as a Newtonian fluid. To investigate the multidirectionality of the blood flow fields, besides the time-averaged wall shear stress (TAWSS), we calculated the oscillatory shear index (OSI), the relative residence time (RRT) and the time-averaged cross flow index (TACFI). Our CFD simulations suggest that in the majority of our vascular models there is a formation of complex intrasaccular flow patterns, resulting to low and highly oscillating WSS, especially in the area of the daughter blebs. The existence of disturbed multi-directional blood flow fields is also evident by the distributions of the RRT and the TACFI. These findings further support the theory that IAs with daughter blebs are linked to a potentially increased rupture risk.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Humans , Aneurysm, Ruptured/diagnostic imaging , Hemodynamics/physiology , Hydrodynamics , Intracranial Aneurysm/diagnostic imaging , Nuclear Family , Risk Factors , Stress, Mechanical
2.
Med Phys ; 49(1): 547-567, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34724215

ABSTRACT

PURPOSE: The purpose of this study was to identify the properties of magnetite nanoparticles that deliver optimal heating efficiency, predict the geometrical characteristics to get these target properties, and determine the concentrations of nanoparticles required to optimize thermotherapy. METHODS: Kinetic Monte Carlo simulations were employed to identify the properties of magnetic nanoparticles that deliver high Specific Absorption Rate (SAR) values. Optimal volumes were determined for anisotropies ranging between 11 and 40 kJ/m3 under clinically relevant magnetic field conditions. Atomistic spin simulations were employed to determine the aspect ratios of ellipsoidal magnetite nanoparticles that deliver the target properties. A numerical model was developed using the extended cardiac-torso (XCAT) phantom to simulate low-field (4 kA/m) and high-field (18 kA/m) prostate cancer thermotherapy. A stationary optimization study exploiting the Method of Moving Asymptotes (MMA) was carried out to calculate the concentration fields that deliver homogenous temperature distributions within target thermotherapy range constrained by the optimization objective function. A time-dependent study was used to compute the thermal dose of a 30-min session. RESULTS: Prolate ellipsoidal magnetite nanoparticles with a volume of 3922 ± 35 nm3 and aspect ratio of 1.56, which yields an effective anisotropy of 20 kJ/m3 , constituted the optimal design at current maximum clinical field properties (H0   = 18 kA/m, f = 100 kHz), with SAR = 342.0 ± 2.7 W/g, while nanoparticles with a volume of 4147 ± 36 nm3 , aspect ratio of 1.29, and effective anisotropy 11 kJ/m3 were optimal for low-field applications (H0   = 4 kA/m, f = 100 kHz), with SAR = 50.2 ± 0.5 W/g. The average concentration of 3.86 ± 0.10 and 0.57 ± 0.01 mg/cm3 at 4 and 18 kA/m, respectively, were sufficient to reach therapeutic temperatures of 42-44°C throughout the prostate volume. The thermal dose delivered during a 30-min session exceeded 5.8 Cumulative Equivalent Minutes at 43°C within 90% of the prostate volume (CEM43T90 ). CONCLUSION: The optimal properties and design specifications of magnetite nanoparticles vary with magnetic field properties. Application-specific magnetic nanoparticles or nanoparticles that are optimized at low fields are indicated for optimal thermal dose delivery at low concentrations.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Humans , Magnetic Fields , Male , Monte Carlo Method , Temperature
3.
Int J Numer Method Biomed Eng ; 37(12): e3524, 2021 12.
Article in English | MEDLINE | ID: mdl-34448366

ABSTRACT

We use computational fluid dynamics (CFD) to simulate blood flow in intracranial aneurysms (IAs). Despite ongoing improvements in the accuracy and efficiency of body-fitted CFD solvers, generation of a high quality mesh appears as the bottleneck of the flow simulation and strongly affects the accuracy of the numerical solution. To overcome this drawback, we use an immersed boundary method. The proposed approach solves the incompressible Navier-Stokes equations on a rectangular (box) domain discretized using uniform Cartesian grid using the finite element method. The immersed object is represented by a set of points (Lagrangian points) located on the surface of the object. Grid local refinement is applied using an automated algorithm. We verify and validate the proposed method by comparing our numerical findings with published experimental results and analytical solutions. We demonstrate the applicability of the proposed scheme on patient-specific blood flow simulations in IAs.


Subject(s)
Hemodynamics , Intracranial Aneurysm , Algorithms , Computer Simulation , Diagnostic Imaging , Humans
4.
Phys Med ; 71: 39-52, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32088564

ABSTRACT

PURPOSE: The purpose of this study is to employ magnetic fluid hyperthermia simulations in the precise computation of Specific Absorption Rate functions -SAR(T)-, and in the evaluation of the predictive capacity of different SAR calculation methods. METHODS: Magnetic fluid hyperthermia experiments were carried out using magnetite-based nanofluids. The respective SAR values were estimated through four different calculation methods including the initial slope method, the Box-Lucas method, the corrected slope method and the incremental analysis method (INCAM). A novel numerical model combining the heat transfer equations and the Navier-Stokes equations was developed to reproduce the experimental heating process. To address variations in heating efficiency with temperature, the expression of the power dissipation as a Gaussian function of temperature was introduced and the Levenberg-Marquardt optimization algorithm was employed to compute the function parameters and determine the function's effective branch within each measurement's temperature range. The power dissipation function was then reduced to the respective SAR function. RESULTS: The INCAM exhibited the lowest relative errors ranging between 0.62 and 15.03% with respect to the simulations. SAR(T) functions exhibited significant variations, up to 45%, within the MFH-relevant temperature range. CONCLUSIONS: The examined calculation methods are not suitable to accurately quantify the heating efficiency of a magnetic fluid. Numerical models can be exploited to effectively compute SAR(T) and contribute to the development of robust hyperthermia treatment planning applications.


Subject(s)
Hyperthermia, Induced/methods , Magnetics , Algorithms , Calorimetry , Computer Simulation , Hot Temperature , Humans , Linear Models , Magnetite Nanoparticles , Normal Distribution , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...