Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22269531

ABSTRACT

SARS-CoV-2 vaccination is the most effective strategy to protect patients with haematologic malignancies against severe COVID-19, but primary vaccine responses are less effective in this population. Here, we characterized the humoral responses following 3 months after mRNA-based vaccines in patients at different stages of the same plasma cell diseases, including monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM) and multiple myeloma on first line therapy (MM), compared to a healthy control population matched by sex and age. We observed that plasmas from uninfected MM patients after 3 months post-vaccine have lower SARS-CoV-2 specific IgG and IgA antibodies and decreased neutralization capacity compared with MGUS and SMM individuals, and a group of healthy controls. Importantly, we detected significantly higher plasma neutralization capacity in MM individuals who recovered from COVID-19 compared to their uninfected counterparts, highlighting that hybrid immunity elicit stronger immune responses even in this immunocompromised population. In contrast to MM group, no differences in the vaccine-induced humoral response were observed between uninfected MGUS, SMM and healthy individuals. In conclusion, a booster vaccine dose is recommended in uninfected MM patients to develop an adequate and effective humoral response to SARS-CoV-2 vaccine.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21266502

ABSTRACT

BackgroundSARS-CoV-2 vaccination is the most effective strategy to protect elders living in long-term care facilities (LTCF) against severe COVID-19, but primary vaccine responses are less effective in older adults. Here, we characterized the humoral responses following 3 months after mRNA/BNT162b2 vaccine in institutionalized elders. MethodsPlasma levels of specific SARS-CoV-2 total IgG, IgM and IgA antibodies were measured before and 3 months after vaccination in elders living in LTCF. Neutralization capacity was assessed in a pseudovirus neutralization assay against WH1 (original) and B.1.617.2/Delta variants. A group of younger adults was used as reference group. ResultsThree months after vaccination, uninfected-elders presented reduced specific SARS-CoV-2 IgG levels and significantly lower neutralization capacity against the WH1 and Delta virus compared to vaccinated uninfected younger individuals. In contrast, COVID-19 recovered elders showed significantly higher specific SARS-CoV-2 IgG levels after vaccination than younger counterparts, while showing similar neutralization activity against WH1 virus and increased neutralization capacity against Delta variant. Despite previously infected elders elicit potent cross-reactive immune responses similarly to younger individuals, higher quantities of specific SARS-CoV-2 IgG antibodies are required to reach the same neutralization levels. ConclusionsWhile hybrid immunity seems to be active in previously infected elders after three months from mRNA/BNT162b2 vaccination, humoral immune responses are diminished in COVID-19 uninfected vaccinated residents living in LTCF. These results suggests that a vaccine booster dose should be prioritized for this particularly vulnerable population. Word summaryWhile previously infected and vaccinated elders living in LTCF had comparable neutralizing antibody levels to younger individuals, vaccinated uninfected-residents showed limited neutralization capacity against both original and delta variants. Hybrid immunity seems to be active in elders and can be relevant to design vaccine boosting campaigns.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21261921

ABSTRACT

BackgroundUnderstanding the determinants of long-term immune responses to SARS-CoV-2 and the concurrent impact of vaccination and emerging variants of concern will guide optimal strategies to achieve global protection against the COVID-19 pandemic. MethodsA prospective cohort of 332 COVID-19 patients was followed beyond one year. Plasma neutralizing activity was evaluated using HIV-based reporter pseudoviruses expressing different SARS-CoV-2 spikes and was longitudinally analyzed using mixed-effects models. FindingsLong-term neutralizing activity was stable beyond one year after infection in mild/asymptomatic and hospitalized participants. However, longitudinal models suggest that hospitalized individuals generate both short- and long-lived memory B cells, while outpatient responses were dominated by long-lived B cells. In both groups, vaccination boosted responses to natural infection, although viral variants, mainly B.1.351, reduced the efficacy of neutralization. Importantly, despite showing higher neutralization titers, hospitalized patients showed lower cross-neutralization of B.1.351 variant compared to outpatients. Multivariate analysis identified severity of primary infection as the factor that independently determines both the magnitude and the inferior cross-neutralization activity of long-term neutralizing responses. ConclusionsNeutralizing response induced by SARS-CoV-2 is heterogeneous in magnitude but stable beyond one year after infection. Vaccination boosts these long-lasting natural neutralizing responses, counteracting the significant resistance to neutralization of new viral variants. Severity of primary infection determines higher magnitude but poorer quality of long-term neutralizing responses.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21260449

ABSTRACT

As the SARS-CoV-2 virus (COVID-19) continues to affect people across the globe, there is limited understanding of the long term implications for infected patients1-3. While some of these patients have documented follow-ups on clinical records, or participate in longitudinal surveys, these datasets are usually designed by clinicians, and not granular enough to understand the natural history or patient experiences of long COVID. In order to get a complete picture, there is a need to use patient generated data to track the long-term impact of COVID-19 on recovered patients in real time. There is a growing need to meticulously characterize these patients experiences, from infection to months post-infection, and with highly granular patient generated data rather than clinician narratives. In this work, we present a longitudinal characterization of post-COVID-19 symptoms using social media data from Twitter. Using a combination of machine learning, natural language processing techniques, and clinician reviews, we mined 296,154 tweets to characterize the post-acute infection course of the disease, creating detailed timelines of symptoms and conditions, and analyzing their symptomatology during a period of over 150 days.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-438781

ABSTRACT

The role of T cells in the control of SARS-CoV-2 infection has been underestimated in favor of neutralizing antibodies. However, cellular immunity is essential for long-term viral control and protection from disease severity. To understand T-cell immunity in the absence of antibody generation we focused on a group of SARS-CoV-2 Non-Seroconvertors (NSC) recovered from infection. We performed an immune comparative analysis of SARS-CoV-2 infected individuals stratified by the absence or presence of seroconversion and disease severity. We report high levels of total naive and low effector CD8+ T cells in NSC. Moreover, polyfunctional Nucleocapsid (NP)-specific CD8+ T-cell responses, as well as reduced levels of T-cell activation monitored by PD-1 and activation-induced markers, were distinctive immunological traits in NSC. Longitudinal data support the stability of the NSC phenotype over three months. Our results implicate highly functional SARS-CoV-2 Spike and NP T-cell responses with low immune activation in protection from disease severity in the absence of seroconversion. SUMMARYTo understand SARS-CoV-2 specific T-cell immunity in the absence of seroconversion, we characterized immunological features of Non-Seroconvertors recovered from infection. Highly functional specific T-cell responses and low immune activation were determinants of immune protection from severe disease.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-389056

ABSTRACT

Understanding mid-term kinetics of immunity to SARS-CoV-2 is the cornerstone for public health control of the pandemic and vaccine development. However, current evidence is rather based on limited measurements, thus losing sight of the temporal pattern of these changes1-6. In this longitudinal analysis, conducted on a prospective cohort of COVID-19 patients followed up to 242 days, we found that individuals with mild or asymptomatic infection experienced an insignificant decay in neutralizing activity that persisted six months after symptom onset or diagnosis. Hospitalized individuals showed higher neutralizing titers, which decreased following a two-phase pattern, with an initial rapid decline that significantly slowed after day 80. Despite this initial decay, neutralizing activity at six months remained higher among hospitalized individuals. The slow decline in neutralizing activity at mid-term contrasted with the steep slope of antibody titers change, reinforcing the hypothesis that the quality of immune response evolves over the post-convalescent stage4,5.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-055756

ABSTRACT

There is an urgent need to identify therapeutics for the treatment of Coronavirus diseases 2019 (COVID-19). Although different antivirals are given for the clinical management of SARS-CoV-2 infection, their efficacy is still under evaluation. Here, we have screened existing drugs approved for human use in a variety of diseases, to compare how they counteract SARS-CoV-2-induced cytopathic effect and viral replication in vitro. Among the potential 72 antivirals tested herein that were previously proposed to inhibit SARS-CoV-2 infection, only 18% had an IC50 below 25 M or 102 IU/mL. These included plitidepsin, novel cathepsin inhibitors, nelfinavir mesylate hydrate, interferon 2-alpha, interferon-gamma, fenofibrate, camostat along the well-known remdesivir and chloroquine derivatives. Plitidepsin was the only clinically approved drug displaying nanomolar efficacy. Four of these families, including novel cathepsin inhibitors, blocked viral entry in a cell-type specific manner. Since the most effective antivirals usually combine therapies that tackle the virus at different steps of infection, we also assessed several drug combinations. Although no particular synergy was found, inhibitory combinations did not reduce their antiviral activity. Thus, these combinations could decrease the potential emergence of resistant viruses. Antivirals prioritized herein identify novel compounds and their mode of action, while independently replicating the activity of a reduced proportion of drugs which are mostly approved for clinical use. Combinations of these drugs should be tested in animal models to inform the design of fast track clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL