Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 116(2): 97-104, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24210869

ABSTRACT

The research and development of mechatronic aids for surgery is a persistent challenge in the field of robotic surgery. This paper presents a new haptic pedal conceived to assist surgeons in the operating room by transmitting real-time surgical information through the foot. An effective human-robot interaction system for medical practice must exchange appropriate information with the operator as quickly and accurately as possible. Moreover, information must flow through the appropriate sensory modalities for a natural and simple interaction. However, users of current robotic systems might experience cognitive overload and be increasingly overwhelmed by data streams from multiple modalities. A new haptic channel is thus explored to complement and improve existing systems. A preliminary set of experiments has been carried out to evaluate the performance of the proposed system in a virtual surgical drilling task. The results of the experiments show the effectiveness of the haptic pedal in providing surgical information through the foot.


Subject(s)
Robotic Surgical Procedures/instrumentation , Adult , Equipment Design , Feedback, Physiological , Female , Foot , Humans , Male , Robotics/instrumentation , Task Performance and Analysis , User-Computer Interface
2.
Comput Methods Programs Biomed ; 112(2): 284-92, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23522964

ABSTRACT

Bone drilling, despite being a very common procedure in hospitals around the world, becomes very challenging when performed close to organs such as the cochlea or when depth control is critical for avoiding damage to surrounding tissue. To date, several mechatronic prototypes have been proposed to assist surgeons by automatically detecting bone layer transitions and breakthroughs. However, none of them is currently accurate enough to be part of the surgeon's standard equipment. The present paper shows a test bench specially designed to evaluate prior methodologies and analyze their drawbacks. Afterward, a new layer detection methodology with improved performance is described and tested. Finally, the prototype of a portable mechatronic bone drill that takes advantage of the proposed detection algorithm is presented.


Subject(s)
Bone and Bones/surgery , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...