Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36432755

ABSTRACT

Anthracnose caused by Colletotrichum lupini is the most important disease affecting lupin cultivation worldwide. Lupinus mutabilis has been widely studied due to its high protein and oil content. However, it has proved to be sensitive to anthracnose, which limits the expansion of its cultivation. In this work, we seek to unveil the strategy that is used by C. lupini to infect and colonize L. mutabilis tissues using light and transmission electron microscopy (TEM). On petioles, pathogen penetration occurred from melanized appressoria, subcuticular intramural hyphae were seen 2 days after inoculation (dai), and the adjacent host cells remained intact. The switch to necrotrophy was observed 3 dai. At this time, the hyphae extended their colonization to the epidermal, cortex, and vascular cells. Wall degradation was more evident in the epidermal cells. TEM observations also revealed a loss of plasma membrane integrity and different levels of cytoplasm disorganization in the infected epidermal cells and in those of the first layers of the cortex. The disintegration of organelles occurred and was particularly visible in the chloroplasts. The necrotrophic phase culminated with the development of acervuli 6 dai. C. lupini used the same infection strategy on stems, but there was a delay in the penetration of host tissues and the appearance of the first symptoms.

2.
Mol Plant Pathol ; 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29517840

ABSTRACT

Olive anthracnose causes fruit rot leading to its drop or mummification, resulting in yield losses and the degradation of oil quality. TAXONOMY AND DISTRIBUTION: The disease is caused by diverse species of Colletotrichum, mostly clustering in the C. acutatum species complex. Colletotrichum nymphaeae and C. godetiae are the prevalent species in the Northern Hemisphere, whereas C. acutatum sensu stricto is the most frequent species in the Southern Hemisphere, although it is recently and quickly emerging in the Northern Hemisphere. The disease has been reported from all continents, but it attains higher incidence and severity in the west of the Mediterranean Basin, where it is endemic in traditional orchards of susceptible cultivars. LIFE CYCLE: The pathogens are able to survive on vegetative organs. On the fruit surface, infections remain quiescent until fruit maturity, when typical anthracnose symptoms develop. Under severe epidemics, defoliation and death of branches can also occur. Pathogen species differ in virulence, although this depends on the cultivar. CONTROL: The selection of resistant cultivars depends strongly on pathogen diversity and environmental conditions, posing added difficulties to breeding efforts. Chemical disease control is normally achieved with copper-based fungicides, although this may be insufficient under highly favourable disease conditions and causes concern because of the presence of fungicide residues in the oil. In areas in which the incidence is high, farmers tend to anticipate harvest, with consequences in yield and oil characteristics. CHALLENGES: Olive production systems, harvest and post-harvest processing have experienced profound changes in recent years, namely new training systems using specific cultivars, new harvest and processing techniques and new organoleptic market requests. Changes are also occurring in both the geographical distribution of pathogen populations and the taxonomic framework. In addition, stricter rules concerning pesticide use are likely to have a strong impact on control strategies. A detailed knowledge of pathogen diversity, population dynamics and host-pathogen interactions is basal for the deployment of durable and effective disease control strategies, whether based on resistance breeding, agronomic practices or biological or chemical control.

3.
Diabetes Care ; 40(10): 1356-1363, 2017 10.
Article in English | MEDLINE | ID: mdl-28818994

ABSTRACT

OBJECTIVE: To assess, in a randomized, double-blind, and placebo-controlled trial, the efficacy and safety of diacerein, an immune modulator anti-inflammatory drug, in improving glycemic control of patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: Eighty-four patients with HbA1c between 7.5 and 9.5% (58-80 mmol/mol) were randomized to 48-week treatment with placebo (n = 41) or diacerein 100 mg/day (n = 43). The primary outcome was the difference in mean HbA1c changes during treatment. Secondary outcomes were other efficacy and safety measurements. A general linear regression with repeated measures, adjusted for age, sex, diabetes duration, and each baseline value, was used to estimate differences in mean changes. Both intention-to-treat (ITT) analysis and per-protocol analysis (excluding 10 patients who interrupted treatment) were performed. RESULTS: Diacerein reduced HbA1c compared with placebo by 0.35% (3.8 mmol/mol; P = 0.038) in the ITT analysis and by 0.41% (4.5 mmol/mol; P = 0.023) in the per-protocol analysis. The peak of effect occurred at the 24th week of treatment (-0.61% [6.7 mmol/mol; P = 0.014] and -0.78% [8.5 mmol/mol; P = 0.005], respectively), but it attenuated toward nonsignificant differences at the 48th week. No significant effect of diacerein was observed in other efficacy and safety measures. Diarrhea occurred in 65% of patients receiving diacerein and caused treatment interruption in 16%. Seven patients in the diacerein group reduced insulin dosage, whereas 10 in the placebo group increased it; however, mild hypoglycemic events were equally observed. CONCLUSIONS: Diacerein reduced mean HbA1c levels, with peak of effect at the 24th week of treatment. The drug was well tolerated and may be indicated as adjunct treatment in patients with type 2 diabetes, particularly in those with osteoarthritis.


Subject(s)
Anthraquinones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Aged , Blood Glucose/metabolism , Body Mass Index , Dose-Response Relationship, Drug , Double-Blind Method , Endpoint Determination , Exercise , Female , Follow-Up Studies , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Male , Middle Aged , Treatment Outcome , Waist Circumference
4.
PLoS One ; 12(5): e0178159, 2017.
Article in English | MEDLINE | ID: mdl-28542545

ABSTRACT

Understanding the molecular mechanisms underlying coffee-pathogen interactions are of key importance to aid disease resistance breeding efforts. In this work the expression of genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways were studied in hypocotyls of two coffee varieties challenged with the hemibiotrophic fungus Colletotrichum kahawae, the causal agent of Coffee Berry Disease. Based on a cytological analysis, key time-points of the infection process were selected and qPCR was used to evaluate the expression of phytohormones biosynthesis, reception and responsive-related genes. The resistance to C. kahawae was characterized by restricted fungal growth associated with early accumulation of phenolic compounds in the cell walls and cytoplasmic contents, and deployment of hypersensitive reaction. Similar responses were detected in the susceptible variety, but in a significantly lower percentage of infection sites and with no apparent effect on disease development. Gene expression analysis suggests a more relevant involvement of JA and ET phytohormones than SA in this pathosystem. An earlier and stronger activation of the JA pathway observed in the resistant variety, when compared with the susceptible one, seems to be responsible for the successful activation of defense responses and inhibition of fungal growth. For the ET pathway, the down or non-regulation of ET receptors in the resistant variety, together with a moderate expression of the responsive-related gene ERF1, indicates that this phytohormone may be related with other functions besides the resistance response. However, in the susceptible variety, the stronger activation of ERF1 gene at the beginning of the necrotrophic phase, suggests the involvement of ET in tissue senescence. As far as we know, this is the first attempt to unveil the role of phytohormones in coffee-C. kahawae interactions, thus contributing to deepen our understanding on the complex mechanisms of plant signaling and defense.


Subject(s)
Coffee/genetics , Coffee/microbiology , Gene Expression Regulation, Plant , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Growth Regulators/genetics , Coffee/metabolism , Colletotrichum/physiology , Disease Resistance , Humans , Hypocotyl/genetics , Hypocotyl/microbiology
5.
Mol Plant Pathol ; 18(8): 1039-1051, 2017 10.
Article in English | MEDLINE | ID: mdl-27885775

ABSTRACT

TAXONOMY AND HISTORY: Hemileia vastatrix Berk. and Broome (Basidiomycota, Pucciniales) was described in 1869 in eastern Africa and Ceylon as the agent of coffee leaf rust and has spread to all coffee cultivation areas worldwide. Major disease outbreaks in Asia, Africa and America caused and continue to cause severe yield losses, making this the most important disease of Arabica coffee, a cash crop for many tropical and sub-tropical countries. LIFE CYCLE AND DISEASE SYMPTOMS: Hemileia vastatrix is a hemicyclic fungus with the urediniosporic life cycle as its most important (if not only) source of inoculum. Chlorotic spots are the first macroscopic symptoms, preceding the differentiation of suprastomatal, bouquet-shaped, orange-coloured uredinia. The disease can cause yield losses of up to 35% and have a polyetic epidemiological impact on subsequent years. DISEASE CONTROL: Although the use of fungicides is one of the preferred immediate control measures, the use of resistant cultivars is considered to be the most effective and durable disease control strategy. The discovery of 'Híbrido de Timor' provided sources of resistance that have been used in several breeding programmes and that have been proven to be effective and durable, as some have been in use for more than 30 years. GENETIC DIVERSITY AND MOLECULAR PATHOGENICITY: Although exhibiting limited genetic polymorphism, the very large genome of H. vastatrix (c. 797 Mbp) conceals great pathological diversity, with more than 50 physiological races. Gene expression studies have revealed a very precocious activation of signalling pathways and production of putative effectors, suggesting that the plant-fungus dialogue starts as early as at the germ tube stage, and have provided clues for the identification of avr genes.


Subject(s)
Basidiomycota/physiology , Coffea/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Tropical Climate , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/pathogenicity , Phylogeny , Plant Diseases/prevention & control
6.
PLoS One ; 11(3): e0150651, 2016.
Article in English | MEDLINE | ID: mdl-26950697

ABSTRACT

Colletotrichum kahawae is an emergent fungal pathogen causing severe epidemics of Coffee Berry Disease on Arabica coffee crops in Africa. Currently, the molecular mechanisms underlying the Coffea arabica-C. kahawae interaction are still poorly understood, as well as the differences in pathogen aggressiveness, which makes the development of functional studies for this pathosystem a crucial step. Quantitative real time PCR (qPCR) has been one of the most promising approaches to perform gene expression analyses. However, proper data normalization with suitable reference genes is an absolute requirement. In this study, a set of 8 candidate reference genes were selected based on two different approaches (literature and Illumina RNA-seq datasets) to assess the best normalization factor for qPCR expression analysis of C. kahawae samples. The gene expression stability of candidate reference genes was evaluated for four isolates of C. kahawae bearing different aggressiveness patterns (Ang29, Ang67, Zim12 and Que2), at different stages of fungal development and key time points of the plant-fungus interaction process. Gene expression stability was assessed using the pairwise method incorporated in geNorm and the model-based method used by NormFinder software. For C. arabica-C. kahawae interaction samples, the best normalization factor included the combination of PP1, Act and ck34620 genes, while for C. kahawae samples the combination of PP1, Act and ck20430 revealed to be the most appropriate choice. These results suggest that RNA-seq analyses can provide alternative sources of reference genes in addition to classical reference genes. The analysis of expression profiles of bifunctional catalase-peroxidase (cat2) and trihydroxynaphthalene reductase (thr1) genes further enabled the validation of the selected reference genes. This study provides, for the first time, the tools required to conduct accurate qPCR studies in C. kahawae considering its aggressiveness pattern, developmental stage and host interaction.


Subject(s)
Colletotrichum/genetics , Gene Expression Profiling/standards , RNA, Fungal/genetics , Real-Time Polymerase Chain Reaction/standards , Sequence Analysis, RNA/standards , Colletotrichum/pathogenicity , Reference Standards
8.
Fungal Biol ; 119(11): 1093-1099, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26466882

ABSTRACT

Appressoria are the first infection structures developed by rust fungi and require specific topographic signals from the host for their differentiation. The ease in obtaining appressoria in vitro for these biotrophic fungi led to studies concerning gene expression and gene discovery at appressorial level, avoiding the need to distinguish plant and fungal transcripts. However, in some pathosystems, it was observed that gene expression in appressoria seems to be influenced by host-derived signals, suggesting that transcriptomic analyses performed from in planta differentiated appressoria would be potentially more informative than those from in vitro differentiated appressoria. Nevertheless analysing appressorial RNA obtained from in planta samples is often hampered by an excessive dilution of fungal RNA within plant RNA, besides uncertainty regarding the fungal or plant origin of RNA from highly conserved genes. To circumvent these difficulties, we have recovered Hemileia vastatrix appressoria from Arabica coffee leaf surface using a film of nitrocellulose dissolved in butyl and ethyl acetates (nail polish), and extracted fungal RNA from the polish peel. RNA thus obtained is of good quality and usable for cDNA synthesis and transcriptomic (quantitative PCR) studies. This method could provide the means to investigate specific host-induced appressoria-related fungal pathogenicity factors.


Subject(s)
Basidiomycota/genetics , Coffea/microbiology , Genetics, Microbial/methods , Molecular Biology/methods , RNA, Fungal/isolation & purification , Gene Expression Profiling , Plant Leaves/microbiology , RNA, Fungal/genetics
9.
Front Plant Sci ; 5: 88, 2014.
Article in English | MEDLINE | ID: mdl-24672531

ABSTRACT

Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee Arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU) and appressoria (Ap) was performed and compared to previously published in planta haustoria-rich (H) data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146), Ap (1479) or H (3270). Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signaling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterization of molecular processes leading to appressoria-mediated infection by rust fungi, these results point toward the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins.

10.
BMC Res Notes ; 6: 388, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24073624

ABSTRACT

BACKGROUND: Coffee production in Africa represents a significant share of the total export revenues and influences the lives of millions of people, yet severe socio-economic repercussions are annually felt in result of the overall losses caused by the coffee berry disease (CBD). This quarantine disease is caused by the fungus Colletotrichum kahawae Waller and Bridge, which remains one of the most devastating threats to Coffea arabica production in Africa at high altitude, and its dispersal to Latin America and Asia represents a serious concern. Understanding the molecular genetic basis of coffee resistance to this disease is of high priority to support breeding strategies. Selection and validation of suitable reference genes presenting stable expression in the system studied is the first step to engage studies of gene expression profiling. RESULTS: In this study, a set of ten genes (S24, 14-3-3, RPL7, GAPDH, UBQ9, VATP16, SAND, UQCC, IDE and ß-Tub9) was evaluated to identify reference genes during the first hours of interaction (12, 48 and 72 hpi) between resistant and susceptible coffee genotypes and C. kahawae. Three analyses were done for the selection of these genes considering the entire dataset and the two genotypes (resistant and susceptible), separately. The three statistical methods applied GeNorm, NormFinder, and BestKeeper, allowed identifying IDE as one of the most stable genes for all datasets analysed, and in contrast GADPH and UBQ9 as the least stable ones. In addition, the expression of two defense-related transcripts, encoding for a receptor like kinase and a pathogenesis related protein 10, were used to validate the reference genes selected. CONCLUSION: Taken together, our results provide guidelines for reference gene(s) selection towards a more accurate and widespread use of qPCR to study the interaction between Coffea spp. and C. kahawae.


Subject(s)
Coffea/genetics , Coffea/microbiology , Colletotrichum/physiology , Genes, Plant/genetics , Hypocotyl/microbiology , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction/standards , Databases, Genetic , Gene Expression Regulation, Plant , Hypocotyl/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Reference Standards , Reproducibility of Results , Software
11.
Mol Ecol ; 21(11): 2655-70, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22519519

ABSTRACT

Ecological speciation through host-shift has been proposed as a major route for the appearance of novel fungal pathogens. The growing awareness of their negative impact on global economies and public health created an enormous interest in identifying the factors that are most likely to promote their emergence in nature. In this work, a combination of pathological, molecular and geographical data was used to investigate the recent emergence of the fungus Colletotrichum kahawae. C. kahawae emerged as a specialist pathogen causing coffee berry disease in Coffea arabica, owing to its unparalleled adaptation of infecting green coffee berries. Contrary to current hypotheses, our results suggest that a recent host-jump underlay the speciation of C. kahawae from a generalist group of fungi seemingly harmless to coffee berries. We posit that immigrant inviability and a predominantly asexual behaviour could have been instrumental in driving speciation by creating pleiotropic interactions between local adaptation and reproductive patterns. Moreover, we estimate that C. kahawae began its diversification at <2200 bp leaving a very short time frame since the divergence from its sibling lineage (c. 5600 bp), during which a severe drop in C. kahawae's effective population size occurred. This further supports a scenario of recent introduction and subsequent adaptation to C. arabica. Phylogeographical data revealed low levels of genetic polymorphism but provided the first geographically consistent population structure of C. kahawae, inferring the Angolan population as the most ancestral and the East African populations as the most recently derived. Altogether, these results highlight the significant role of host specialization and asexuality in the emergence of fungal pathogens through ecological speciation.


Subject(s)
Coffea/microbiology , Colletotrichum/genetics , Colletotrichum/pathogenicity , Genetic Speciation , Host-Pathogen Interactions , Plant Diseases/microbiology , Angola , Bayes Theorem , Ecotype , Fruit/microbiology , Models, Biological , Phylogeny , Phylogeography , Reproduction, Asexual
12.
Mol Plant Pathol ; 13(1): 17-37, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21726390

ABSTRACT

Coffee (Coffea arabica L.), one of the key export and cash crops in tropical and subtropical countries, suffers severe losses from the rust fungus Hemileia vastatrix. The transcriptome of H. vastatrix was analysed during a compatible interaction with coffee to obtain an exhaustive repertoire of the genes expressed during infection and to identify potential effector genes. Large-scale sequencing (454-GS-FLEX Titanium) of mixed coffee and rust cDNAs obtained from 21-day rust-infected leaves generated 352 146 sequences which assembled into 22 774 contigs. In the absence of any reference genomic sequences for Coffea or Hemileia, specific trinucleotide frequencies within expressed sequence tags (ESTs) and blast homology against a set of dicots and basidiomycete genomes were used to distinguish pathogen from plant sequences. About 30% (6763) of the contigs were assigned to H. vastatrix and 61% (13 951) to C. arabica. The majority (60%) of the rust sequences did not show homology to any genomic database, indicating that they were potential novel fungal genes. In silico analyses of the 6763 H. vastatrix contigs predicted 382 secreted proteins and identified homologues of the flax rust haustorially expressed secreted proteins (HESPs) and bean rust transferred protein 1 (RTP1). These rust candidate effectors showed conserved amino-acid domains and conserved patterns of cysteine positions suggestive of conserved functions during infection of host plants. Quantitative reverse transcription-polymerase chain reaction profiling of selected rust genes revealed dynamic expression patterns during the time course of infection of coffee leaves. This study provides the first valuable genomic resource for the agriculturally important plant pathogen H. vastatrix and the first comprehensive C. arabica EST dataset.


Subject(s)
Basidiomycota/physiology , Coffea/genetics , Coffea/microbiology , Fungal Proteins/metabolism , Host-Pathogen Interactions/genetics , Plant Leaves/microbiology , Sequence Analysis, DNA/methods , Amino Acid Sequence , Basidiomycota/genetics , Computational Biology , Conserved Sequence , Contig Mapping , Expressed Sequence Tags , Fungal Proteins/chemistry , Gene Expression Profiling , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Temperature
13.
Fungal Biol ; 115(9): 891-901, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21872186

ABSTRACT

Hemileia vastatrix is a biotrophic fungus, causing coffee leaf rust in all coffee growing countries, leading to serious social and economic problems. Gene expression studies may have a key role unravelling the transcriptomics of this pathogen during interaction with the plant host. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is currently the golden standard for gene expression analysis, although an accurate normalisation is essential for adequate conclusions. Reference genes are often used for this purpose, but the stability of their expression levels requires validation under experimental conditions. Moreover, pathogenic fungi undergo important biomass variations along their infection process in planta, which raises the need for an adequate method to further normalise the proportion of fungal cDNA in the total plant and fungus cDNA pool. In this work, the expression profiles of seven reference genes [glyceraldehyde-3-phosphate dehydrogenase (GADPH), elongation factor (EF-1), Beta tubulin (ß-tubulin), cytochrome c oxidase subunit III (Cyt III), cytochrome b (Cyt b), Hv00099, and 40S ribosomal protein (40S_Rib)] were analysed across 28 samples, obtained in vitro (germinated uredospores and appressoria) and in planta (post-penetration fungal growth phases). Gene stability was assessed using the statistical algorithms incorporated in geNorm and NormFinder tools. Cyt b, 40S_Rib, and Hv00099 were the most stable genes for the in vitro dataset, while 40S_Rib, GADPH, and Cyt III were the most stable in planta. For the combined datasets (in vitro and in planta), 40S_Rib, GADPH, and Hv00099 were selected as the most stable. Subsequent expression analysis for a gene encoding an alpha subunit of a heterotrimeric G-protein showed that the reference genes selected for the combined dataset do not differ significantly from those selected specifically for the in vitro and in planta datasets. Our study provides tools for correct validation of reference genes in obligate biotrophic plant pathogens, as well as the basis for RT-qPCR studies in H. vastatrix.


Subject(s)
Basidiomycota/genetics , Coffea/microbiology , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Plant Diseases/microbiology , Reverse Transcriptase Polymerase Chain Reaction/methods , Basidiomycota/isolation & purification , Fungal Proteins/metabolism , Fungal Proteins/standards , Plant Leaves/microbiology , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...