Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Am J Bot ; 111(3): e16305, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517199

ABSTRACT

PREMISE: The western North American fern genus Pentagramma (Pteridaceae) is characterized by complex patterns of ploidy variation, an understanding of which is critical to comprehending both the evolutionary processes within the genus and its current diversity. METHODS: We undertook a cytogeographic study across the range of the genus, using a combination of chromosome counts and flow cytometry to infer ploidy level. Bioclimatic variables and elevation were used to compare niches. RESULTS: We found that diploids and tetraploids are common and widespread, and triploids are rare and sporadic; in contrast with genome size inferences in earlier studies, no hexaploids were found. Diploids and tetraploids show different geographic ranges: only tetraploids were found in the northernmost portion of the range (Washington, Oregon, and British Columbia) and only diploids were found in the Sierra Nevada of California. Diploid, triploid, and tetraploid cytotypes were found to co-occur in relatively few localities: in the southern (San Diego County, California) and desert Southwest (Arizona) parts of the range, and along the Pacific Coast of California. CONCLUSIONS: Tetraploids occupy a wider bioclimatic niche than diploids both within P. triangularis and at the genus-wide scale. It is unknown whether the wider niche of tetraploids is due to their expansion upon the diploid niche, if diploids have contracted their niche due to competition or changing abiotic conditions, or if this wider niche occupancy is due to multiple origins of tetraploids.


Subject(s)
Ferns , Pteridaceae , Diploidy , Tetraploidy , Polyploidy
2.
Biodivers Data J ; 12: e117172, 2024.
Article in English | MEDLINE | ID: mdl-38481855

ABSTRACT

Background: Bees are important actors in terrestrial ecosystems and are recognised for their prominent role as pollinators. In the Iberian Peninsula, approximately 1,100 bee species are known, with nearly 100 of these species being endemic to the Peninsula. A reference collection of DNA barcodes, based on morphologically identified bee specimens, representing 514 Iberian species, was constructed. The "InBIO Barcoding Initiative Database: DNA Barcodes of Iberian bees" dataset contains records of 1,059 sequenced specimens. The species of this dataset correspond to about 47% of Iberian bee species diversity and 21% of endemic species diversity. For peninsular Portugal only, the corresponding coverage is 71% and 50%. Specimens were collected between 2014 and 2022 and are deposited in the research collection of Thomas Wood (Naturalis Biodiversity Center, The Netherlands), in the FLOWer Lab collection at the University of Coimbra (Portugal), in the Andreia Penado collection at the Natural History and Science Museum of the University of Porto (MHNC-UP) (Portugal) and in the InBIO Barcoding Initiative (IBI) reference collection (Vairão, Portugal). New information: Of the 514 species sequenced, 75 species from five different families are new additions to the Barcode of Life Data System (BOLD) and 112 new BINs were added. Whilst the majority of species were assigned to a single BIN (94.9%), 27 nominal species were assigned to multiple BINs. Although the placement into multiple BINs may simply reflect genetic diversity and variation, it likely also represents currently unrecognised species-level diversity across diverse taxa, such as Amegillaalbigena Lepeletier, 1841, Andrenarussula Lepeletier, 1841, Lasioglossumleucozonium (Schrank, 1781), Nomadafemoralis Morawitz, 1869 and Sphecodesalternatus Smith, 1853. Further species pairs of Colletes, Hylaeus and Nomada were placed into the same BINs, emphasising the need for integrative taxonomy within Iberia and across the Mediterranean Basin more broadly. These data substantially contribute to our understanding of bee genetic diversity and DNA barcodes in Iberia and provide an important baseline for ongoing taxonomic revisions in the West Palaearctic biogeographical region.

3.
Proc Natl Acad Sci U S A ; 121(10): e2313312121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412128

ABSTRACT

Somatic mutations potentially play a role in plant evolution, but common expectations pertaining to plant somatic mutations remain insufficiently tested. Unlike in most animals, the plant germline is assumed to be set aside late in development, leading to the expectation that plants accumulate somatic mutations along growth. Therefore, several predictions were made on the fate of somatic mutations: mutations have generally low frequency in plant tissues; mutations at high frequency have a higher chance of intergenerational transmission; branching topology of the tree dictates mutation distribution; and exposure to UV (ultraviolet) radiation increases mutagenesis. To provide insights into mutation accumulation and transmission in plants, we produced two high-quality reference genomes and a unique dataset of 60 high-coverage whole-genome sequences of two tropical tree species, Dicorynia guianensis (Fabaceae) and Sextonia rubra (Lauraceae). We identified 15,066 de novo somatic mutations in D. guianensis and 3,208 in S. rubra, surprisingly almost all found at low frequency. We demonstrate that 1) low-frequency mutations can be transmitted to the next generation; 2) mutation phylogenies deviate from the branching topology of the tree; and 3) mutation rates and mutation spectra are not demonstrably affected by differences in UV exposure. Altogether, our results suggest far more complex links between plant growth, aging, UV exposure, and mutation rates than commonly thought.


Subject(s)
Fabaceae , Lauraceae , Animals , Trees/genetics , Mutation , Mutation Rate
4.
J Alzheimers Dis ; 97(2): 791-804, 2024.
Article in English | MEDLINE | ID: mdl-38189752

ABSTRACT

BACKGROUND: With continuously aging societies, an increase in the number of people with cognitive decline is to be expected. Aside from the development of causative treatments, the successful implementation of prevention strategies is of utmost importance to reduce the high societal burden caused by neurodegenerative diseases leading to dementia among which the most common cause is Alzheimer's disease. OBJECTIVE: The aim of the Luxembourgish "programme dementia prevention (pdp)" is to prevent or at least delay dementia in an at-risk population through personalized multi-domain lifestyle interventions. The current work aims to provide a detailed overview of the methodology and presents initial results regarding the cohort characteristics and the implementation process. METHODS: In the frame of the pdp, an extensive neuropsychological evaluation and risk factor assessment are conducted for each participant. Based on the results, individualized multi-domain lifestyle interventions are suggested. RESULTS: A total number of 450 participants (Mean age = 69.5 years; SD = 10.8) have been screened at different recruitment sites throughout the country, among whom 425 participants (94.4%) met the selection criteria. CONCLUSIONS: We provide evidence supporting the feasibility of implementing a nationwide dementia prevention program and achieving successful recruitment of the target population by establishing a network of different healthcare providers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Luxembourg/epidemiology , Cognitive Dysfunction/therapy , Alzheimer Disease/epidemiology , Alzheimer Disease/prevention & control , Life Style , Patient Selection
5.
Insects ; 15(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276825

ABSTRACT

Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.

6.
Sci Data ; 10(1): 905, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102159

ABSTRACT

Pollination is a crucial ecosystem service for maintaining plant communities and food production. 75% of the main crops depend on or benefit from pollination services provided by animal pollinators. However, when these services are insufficient and/or inefficient, crops experience pollen limitation with, often, lower associated yield, which may translate into economic losses. We constructed a global dataset that gathers studies with pollination experiments, aiming to provide pollen limitation values of animal-pollinated crops worldwide. Pollination experiments included hand pollen supplementation treatments, where plants were subjected to pollen supplementation of outcross pollen, and natural pollination treatments. The PolLimCrop dataset comprises 294 studies and 1169 unique pollen supplementation experiments with values of pollen limitation for 108 crops, spanning 50 years and 62 countries.


Subject(s)
Crops, Agricultural , Pollination , Ecosystem , Flowers , Pollen
7.
Cytometry A ; 103(12): 953-966, 2023 12.
Article in English | MEDLINE | ID: mdl-37807676

ABSTRACT

Flow cytometry (FCM) is now the most widely used method to determine ploidy levels and genome size of plants. To get reliable estimates and allow reproducibility of measurements, the methodology should be standardized and follow the best practices in the field. In this article, we discuss instrument calibration and quality control and various instrument and acquisition settings (parameters, flow rate, number of events, scales, use of discriminators, peak positions). These settings must be decided before measurements because they determine the amount and quality of the data and thus influence all downstream analyses. We describe the two main approaches to raw data analysis (gating and histogram modeling), and we discuss their advantages and disadvantages. Finally, we provide a summary of best practice recommendations for data acquisition and raw data analysis in plant FCM.


Subject(s)
Ploidies , Flow Cytometry/methods , Reproducibility of Results , Calibration , Genome Size
8.
Microbiol Spectr ; 11(4): e0153223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37289058

ABSTRACT

Within Eukaryotes, fungi are the typical representatives of haplontic life cycles. Basidiomycota fungi are dikaryotic in extensive parts of their life cycle, but diploid nuclei are known to form only in basidia. Among Basidiomycota, the Pucciniales are notorious for presenting the most complex life cycles, with high host specialization, and for their expanded genomes. Using cytogenomic (flow cytometry and cell sorting on propidium iodide-stained nuclei) and cytogenetic (FISH with rDNA probe) approaches, we report the widespread occurrence of replicating haploid and diploid nuclei (i.e., 1C, 2C and a small proportion of 4C nuclei) in diverse life cycle stages (pycnial, aecial, uredinial, and telial) of all 35 Pucciniales species analyzed, but not in sister taxa. These results suggest that the Pucciniales life cycle is distinct from any cycle known, i.e., neither haplontic, diplontic nor haplodiplontic, corroborating patchy and disregarded previous evidence. However, the biological basis and significance of this phenomenon remain undisclosed. IMPORTANCE Within Eukaryotes, fungi are the typical representatives of haplontic life cycles, contrasting with plants and animals. As such, fungi thus contain haploid nuclei throughout their life cycles, with sexual reproduction generating a single diploid cell upon karyogamy that immediately undergoes meiosis, thus resuming the haploid cycle. In this work, using cytogenetic and cytogenomic tools, we demonstrate that a vast group of fungi presents diploid nuclei throughout their life cycles, along with haploid nuclei, and that both types of nuclei replicate. Moreover, haploid nuclei are absent from urediniospores. The phenomenon appears to be transversal to the organisms in the order Pucciniales (rust fungi) and it does not occur in neighboring taxa, but a biological explanation or function for it remains elusive.


Subject(s)
Basidiomycota , Diploidy , Animals , Basidiomycota/genetics , Fungi , Life Cycle Stages , Meiosis
9.
Am J Bot ; 110(6): e16197, 2023 06.
Article in English | MEDLINE | ID: mdl-37329209

ABSTRACT

PREMISE: The relationships between reproductive investment, phenotype, and fitness have been broadly studied in cross-pollinated plants in contrast to selfing species, which are considered less interesting in this area because they are supposed to be a dead end in any evolutionary pathway. Still, selfing plants are unique systems to study these questions since the position of reproductive structures and traits related to flower size play an important role in female and male pollination success. METHODS: Erysimum incanum s.l. is a selfing species complex that has three levels of ploidy (diploids, tetraploids, and hexaploids) and traits that are typically associated with the selfing syndrome. Here, we used 1609 plants belonging to these three ploidies to characterize the floral phenotype and spatial configuration of reproductive structures, reproductive investment (pollen and ovule production), and plant fitness. Then, we used structural equation modelling to analyze the relationship between all these variables across ploidy levels. RESULTS: An increase in ploidy level leads to bigger flowers with anthers exserted farther and more pollen and ovules. In addition, hexaploid plants had higher absolute values for herkogamy, which is positively correlated with fitness. Ovule production significantly mediated the natural selection acting on different phenotypic traits and pollen production, a pattern that is maintained across ploidies. CONCLUSIONS: The changes in floral phenotypes, reproductive investment, and fitness with ploidy level suggest that genome duplication can be a driver for transitions in reproductive strategy by modifying the investment in pollen and ovules and linking them with plant phenotype and fitness.


Subject(s)
Pollination , Reproduction , Selection, Genetic , Ploidies , Phenotype , Flowers/genetics
10.
Methods Mol Biol ; 2672: 25-64, 2023.
Article in English | MEDLINE | ID: mdl-37335468

ABSTRACT

Flow cytometry has emerged as a uniquely flexible, accurate, and widely applicable technology for the analysis of plant cells. One of its most important applications centers on the measurement of nuclear DNA contents. This chapter describes the essential features of this measurement, outlining the overall methods and strategies, but going on to provide a wealth of technical details to ensure the most accurate and reproducible results. The chapter is aimed to be equally accessible to experienced plant cytometrists as well as those newly entering the field. Besides providing a step-by-step guide for estimating genome sizes and DNA-ploidy levels from fresh tissues, special attention is paid to the use of seeds and desiccated tissues for such purposes. Methodological aspects regarding field sampling, transport, and storage of plant material are also given in detail. Finally, troubleshooting information for the most common problems that may arise during the application of these methods is provided.


Subject(s)
Cell Nucleus , Plants , Cell Nucleus/genetics , Cell Nucleus/chemistry , Flow Cytometry/methods , Genome Size , DNA, Plant/genetics , DNA, Plant/analysis , Plants/genetics , Ploidies , Genome, Plant
11.
Front Physiol ; 14: 1172688, 2023.
Article in English | MEDLINE | ID: mdl-37334047

ABSTRACT

Blood pressure (BP) surrogates, such as pulse transit time (PTT) or pulse arrival time (PAT), have been intensively explored with the goal of achieving cuffless, continuous, and accurate BP inference. In order to estimate BP, a one-point calibration strategy between PAT and BP is typically used. Recent research focuses on advanced calibration procedures exploiting the cuff inflation process to improve calibration robustness by active and controlled modulation of peripheral PAT, as measured via plethysmograph (PPG) and electrocardiogram (ECG) combination. Such methods require a detailed understanding of the mechanisms behind the vasculature's response to cuff inflation; for this, a model has recently been developed to infer the PAT-BP calibration from measured cuff-induced vasculature changes. The model, while promising, is still preliminary and only partially validated; in-depth analysis and further developments are still needed. Therefore, this work aims to improve our understanding of the cuff-vasculature interaction in this model; we seek to define potential opportunities and to highlight which aspects may require further study. We compare model behaviors with clinical data samples based on a set of observable characteristics relevant for BP inference and calibration. It is found that the observed behaviors are qualitatively well represented with the current simulation model and complexity, with limitations regarding the prediction of the onset of the distal arm dynamics and behavior changes at high cuff pressures. Additionally, a sensitivity analysis of the model's parameter space is conducted to show the factors that influence the characteristics of its observable outputs. It was revealed that easily controllable experimental variables, such as lateral cuff length and inflation rate, have a significant impact on cuff-induced vasculature changes. An interesting dependency between systemic BP and cuff-induced distal PTT change is also found, revealing opportunities for improved methods for BP surrogate calibration. However, validation via patient data shows that this relation does not hold for all patients, indicating required model improvements to be validated in follow up studies. These results provide promising directions to improve the calibration process featuring cuff inflation towards accurate and robust non-invasive blood pressure estimation.

12.
Front Plant Sci ; 14: 1148828, 2023.
Article in English | MEDLINE | ID: mdl-37152130

ABSTRACT

Introduction: The high frequency of polyploidy in the evolutionary history of many plant groups occurring in the Mediterranean region is likely a consequence of its dynamic paleogeographic and climatic history. Polyploids frequently have distinct characteristics that allow them to overcome the minority cytotype exclusion. Such traits may enable polyploid individuals to grow in habitats different from their parentals and/or expand to new areas, leading to spatial segregation. Therefore, the successful establishment of polyploid lineages has long been associated with niche divergence or niche partitioning and the ability of polyploids to cope with different, often more stressful, conditions. In this study, we aimed to explore the role of environmental variables associated with the current distribution patterns of cytotypes within the polyploid complex Linum suffruticosum s.l.. Methods: The distribution and environmental niches of the five main cytotypes of Linum suffruticosum s.l. (diploids, tetraploids, hexaploids, octoploids and decaploids) were studied across its distribution range. Realized environmental niche of each cytotype was determined using niche modelling tools, such as maximum entropy modelling and niche equivalency and similarity tests. Results: Differences in the environmental conditions of L. suffruticosum s.l. cytotypes were observed, with polyploids being associated with habitats of increased drought and soil pH, narrower temperature ranges and decreased soil water and cation exchange capacities. Diploids present the widest environmental niche, and polyploids occupy part of the diploid niche. Although some polyploids have equivalent potential ecological niches, cytotypes do not co-occur in nature. Additionally, the ecological niche of this polyploid complex is different between continents, with North African habitats being characterised by differences in soil texture, higher pH, and low cation exchange capacity, precipitation and soil water capacity and higher temperatures than habitats in southwest Europe. Discussion: The different ecological conditions played a role in the distribution of cytotypes, but the mosaic distribution could not be entirely explained by the environmental variables included in this study. Other factors, such as reproductive isolation and competitive interactions among cytotypes, could further explain the current diversity and distribution patterns in white flax. This study provides relevant data on the niche requirements of each cytotype for further competition and reciprocal transplant experiments. further competition and reciprocal transplant experiments.

13.
Front Plant Sci ; 14: 1144678, 2023.
Article in English | MEDLINE | ID: mdl-36909429

ABSTRACT

Polyploidy has important ecological effects, including ploidy-mediated effects on morphology, breeding system and ecological tolerances. However, there is still little comprehensive research available to test its adaptive significance and its role in driving distributional patterns. This work aimed to assess the contribution of genome duplications to ecological divergence using an experimental approach with the diploid-tetraploid Jasione maritima polyploid complex. We explored if individuals with different ploidy differ in their tolerance to water deficit and if this may contribute to explaining the distribution patterns along a latitudinal gradient in the northwest Iberian Peninsula. For that, we used three cytogenetic entities: diploids and established tetraploids collected in natural populations along a latitudinal gradient, and neotetraploids synthesized from diploid populations after treatments with colchicine. Thirty plants from each of the nine populations were grown under controlled conditions with half randomly assigned to the water deficit treatment, and half used as control. We determined experimental plants' response by measuring fitness-related parameters, such as above and belowground biomass, plant water status, photosynthetic efficiency and pigments, membrane stability, antioxidant capacity and sugars content. Our data shows that biomass, chlorophyll content, photochemical quenching (qP) and non-photochemical quenching (NPQ) in neotetraploids and established tetraploids were significantly higher than in diploids and that these differences could be attributed to genome duplications. In response to the water deficit, diploids seem to use a strategy of avoidance, whereas tetraploids seem to employ the strategy of tolerance to overcome water deficit stress, which appears equally efficient. Additionally, we did not observe a response pattern along the latitudinal gradient of the distributional range of the J. maritima complex. The results indicate that the response to water deficit is population dependent. Further studies are necessary to understand the role of ploidy in explaining the distribution patterns of the J. maritima complex.

14.
Arq. Ciênc. Vet. Zool. UNIPAR (Online) ; 26(1cont): 295-312, jan.-jun. 2023. tab, graf
Article in Portuguese | LILACS, VETINDEX | ID: biblio-1510523

ABSTRACT

As abelhas africanas (Apis mellifera scutellata) foram introduzidas no Brasil na década de 1950 e, por acidente, cruzaram com outras subespécies de abelhas melíferas europeias. Isso proporcionou o surgimento de híbridos conhecidos atualmente como abelhas africanizadas, que possuem características de rusticidade e maior capacidade de enxamear. A Amazônia mostra potencial para o desenvolvimento da apicultura devido suas características e diversidade floral. Neste sentido, este estudo busca reunir produções científicas sobre apicultura na Amazônia brasileira nos últimos 22 anos, por meio da metodologia de revisão sistemática de literatura, o objetivo é mostrar como tal tema tem sido abordado nas pesquisas. Neste cenário as publicações têm se mostrado crescentes, o que demonstra a tentativa de alinhamento com a Iniciativa Internacional para a Conservação e Uso Sustentável dos polinizadores. Entretanto, os resultados apontam muitas lacunas na produção apícola como, por exemplo, a área de pesquisas higiênico- sanitárias sobre combate de parasitas nas colmeias. No âmbito socioeconômico, as deficiências são ainda mais evidentes pela falta de pesquisas sobre políticas de financiamento da atividade, análises da cadeia de valor entre outros temas. Diante da importância econômica, social e ambiental das abelhas é de suma importância o aprofundamento dos estudos acadêmicos sobre apicultura na Amazônia.(AU)


African bees (Apis mellifera scutellata) were introduced in Brazil in the 1950s and, by accident, crossed with other subspecies of European honey bees. This led to the emergence of hybrids today known as Africanized bees, which have characteristics of rusticity and greater swarming capacity. The Amazonia shows potential for the development beekeeping due to its characteristics and floral diversity. Thus, this study brings together scientific productions on beekeeping in the Brazilian Amazonia in the last 22 years, using the methodology of systematic literature review, the objective is to illustrate how this theme has been addressed in research. In this context, publications have been growing, which demonstrates the attempt to align with the International Initiative for the Conservation and Sustainable Use of pollinators. However, the results point to many gaps in bee production, such as the area of hygienic-sanitary research in combating parasites in hives. In the scope of socioeconomics, the deficiencies are even more evident by the lack of research on policies for financing the activity, analysis of the value chain, among other topics. Given the economic, social and environmental importance of bees, it is extremely important to deepen academic studies on beekeeping in Amazonia.(AU)


Las abejas africanas (Apis mellifera scutellata) se introdujeron en Brasil en la década de 1950 y, por accidente, se cruzaron con otras subespecies de abejas europeas. Esto propició el surgimiento de híbridos hoy conocidos como abejas africanizadas, que tienen características de rusticidad y mayor capacidad de enjambrar. La Amazonía muestra potencial para el desarrollo apícola por sus características y diversidad floral. Así, este estudio reúne las producciones científicas sobre la apicultura en la Amazonía brasileña en los últimos 22 años, utilizando la metodología de revisión sistemática de la literatura, el objetivo es ilustrar cómo este tema ha sido abordado en la investigación. En este contexto, las publicaciones han ido en aumento, lo que demuestra el intento de alinearse con la Iniciativa Internacional para la Conservación y Uso Sostenible de polinizadores. Sin embargo, los resultados apuntan a muchas lagunas en la producción apícola, como el área de investigación higiénico-sanitaria en el combate a los parásitos en las colmenas. En el ámbito de la socioeconomía, las deficiencias son aún más evidentes por la falta de investigación sobre políticas de financiamiento de la actividad, análisis de la cadena de valor, entre otros temas. Dada la importancia económica, social y ambiental de las abejas, es de suma importancia profundizar los estudios académicos sobre la apicultura en la Amazonía.(AU)


Subject(s)
Animals , Amazonian Ecosystem , Beekeeping/methods , Bees
15.
Ann Bot ; 131(1): 171-184, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35390125

ABSTRACT

BACKGROUND AND AIMS: Hybridization is a common and important force in plant evolution. One of its outcomes is introgression - the transfer of small genomic regions from one taxon to another by hybridization and repeated backcrossing. This process is believed to be common in glacial refugia, where range expansions and contractions can lead to cycles of sympatry and isolation, creating conditions for extensive hybridization and introgression. Polyploidization is another genome-wide process with a major influence on plant evolution. Both hybridization and polyploidization can have complex effects on plant evolution. However, these effects are often difficult to understand in recently evolved species complexes. METHODS: We combined flow cytometry, analyses of transcriptomic sequences and pollen tube growth assays to investigate the consequences of polyploidization, hybridization and introgression on the recent evolution of several Erysimum (Brassicaceae) species from the South of the Iberian Peninsula, a well-known glacial refugium. This species complex differentiated in the last 2 million years, and its evolution has been hypothesized to be determined mainly by polyploidization, interspecific hybridization and introgression. KEY RESULTS: Our results support a scenario of widespread hybridization involving both extant and 'ghost' taxa. Several taxa studied here, most notably those with purple corollas, are polyploids, probably of allopolyploid origin. Moreover, hybridization in this group might be an ongoing phenomenon, as pre-zygotic barriers appeared weak in many cases. CONCLUSIONS: The evolution of Erysimum spp. has been determined by hybridization to a large extent. Species with purple (polyploids) and yellow flowers (mostly diploid) exhibit a strong signature of introgression in their genomes, indicating that hybridization occurred regardless of colour and across ploidy levels. Although the adaptive value of such genomic exchanges remains unclear, our results demonstrate the significance of hybridization for plant diversification, which should be taken into account when studying plant evolution.


Subject(s)
Brassicaceae , Erysimum , Hybridization, Genetic , Polyploidy , Europe , Phylogeny
16.
Trop Anim Health Prod ; 54(6): 362, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36287275

ABSTRACT

This study explored the effects of different supplementation strategies during the dry and rainy seasons in the tropics on the carcass traits and meat quality of Nellore cattle produced under grazing conditions. Additionally, a cost assessment of the supplementation strategies was conducted to define the most suitable ones from an economic standpoint. Twenty-eight non-castrated male animals (18 months) with an initial body weight of 327.9 ± 4.2 kg were used. The animals were equitably distributed in a randomized complete design thorough four supplementation strategies as follows: (i) mineral supplementation (MS) in both dry and rainy seasons (MS/MS), (ii) MS during the dry season and concentrate supplementation (CS) during the rainy season (MS/CS), (iii) CS during the dry season and MS during the rainy season (CS/MS), and (iv) CS in both dry and rainy seasons (CS/CS). Thereafter, carcass traits, primary carcass cut yields, meat quality traits, and chemical composition of the meat of cattle produced across different supplementation strategies were determined. Data revealed that animals under CS/CS showed the greatest (P < 0.01) hot carcass weights among the other supplementation strategies evaluated. Conversely, supplementation strategy did not affect (P > 0.10) the carcass traits (the ribeye area, final pH, and forequarter), meat quality traits (shear force, myofibrillar fragment index, sarcomere length, and color), and meat chemical composition (crude protein, fat, and moisture) of the animals. A cost assessment of the supplementation strategies revealed that CS/CS had the highest production costs. Nevertheless, CS/CS had the greatest income and profit, while MS/MS had the lowest ones. In conclusion, data suggest that cattle grazing on tropical forage under CS during at least one season (i.e., dry or rainy) produce similar meat quality traits and chemical composition of meat to those observed for animals under CS in both seasons. Additionally, the last supplementation strategy revealed the greatest profit indicators among the other explored.


Subject(s)
Meat , Tandem Mass Spectrometry , Cattle , Male , Animals , Tandem Mass Spectrometry/veterinary , Seasons , Dietary Supplements/analysis , Minerals , Body Composition
17.
Cytometry A ; 101(9): 701-702, 2022 09.
Article in English | MEDLINE | ID: mdl-36047544

Subject(s)
Research , Flow Cytometry
18.
Nat Commun ; 13(1): 3729, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764640

ABSTRACT

The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the 'plant island syndrome', include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin's giant daisies.


Subject(s)
DNA Transposable Elements , Genomics , Biological Evolution , DNA Transposable Elements/genetics , Synteny/genetics
19.
Plants (Basel) ; 11(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35270163

ABSTRACT

Festuca indigesta subsp. indigesta (Poaceae) is endemic to the southeast of Spain, and until recently, it was considered that its range of distribution was restricted to the siliceous core of Sierra Nevada. However, it has been recently extended in the territory to others calcareous mountains. This study investigates the cytogenetic variability throughout the geographic range of this taxon, the possible edaphic preferences of each cytotype, and the morphological variation of cytotypes. Genome sizes and ploidy levels were estimated using flow cytometry and chromosome count. Soil samples were collected to test the nature of the substrate, i.e., pH, and calcium and magnesium contents. Finally, morphological characters were measured in herbarium specimens. This study provides the first genome size data for the species. Hidden cytogenetic diversity was detected in the taxon, comprising hexaploid (2n = 6x = 42), octoploid (2n = 8x = 56) and dodecaploid (2n = 12x = 84) individuals. No relationship between substrate nature and cytotype was observed. Morphological differences were detected for the size of floral parts and stomata among cytotypes, but these were blurred if the entire morphological variation range was considered. Our results suggest that each mountain range could act as a reservoir of morphologically cryptic genetic diversity regarding this taxon.

20.
Cytometry A ; 101(9): 749-781, 2022 09.
Article in English | MEDLINE | ID: mdl-34585818

ABSTRACT

Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.


Subject(s)
Plants , Ploidies , DNA, Plant/genetics , Flow Cytometry/methods , Genome Size , Genome, Plant , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...