Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Inform Decis Mak ; 21(1): 295, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711186

ABSTRACT

BACKGROUND: Occlusions of intravenous (IV) tubing can prevent vital and time-critical medication or solutions from being delivered into the bloodstream of patients receiving IV therapy. At low flow rates (≤ 1 ml/h) the alarm delay (time to an alert to the user) can be up to 2 h using conventional pressure threshold algorithms. In order to reduce alarm delays we developed and evaluated the performance of two new real-time occlusion detection algorithms and one co-occlusion detector that determines the correlation in trends in pressure changes for multiple pumps. METHODS: Bench-tested experimental runs were recorded in triplicate at rates of 1, 2, 4, 8, 16, and 32 ml/h. Each run consisted of 10 min of non-occluded infusion followed by a period of occluded infusion of 10 min or until a conventional occlusion alarm at 400 mmHg occurred. The first algorithm based on binary logistic regression attempts to detect occlusions based on the pump's administration rate Q(t) and pressure sensor readings P(t). The second algorithm continuously monitored whether the actual variation in the pressure exceeded a threshold of 2 standard deviations (SD) above the baseline pressure. When a pump detected an occlusion using the SD algorithm, a third algorithm correlated the pressures of multiple pumps to detect the presence of a shared occlusion. The algorithms were evaluated using 6 bench-tested baseline single-pump occlusion scenarios, 9 single-pump validation scenarios and 7 multi-pump co-occlusion scenarios (i.e. with flow rates of 1 + 1, 1 + 2, 1 + 4, 1 + 8, 1 + 16, and 1 + 32 ml/h respectively). Alarm delay was the primary performance measure. RESULTS: In the baseline single-pump occlusion scenarios, the overall mean ± SD alarm delay of the regression and SD algorithms were 1.8 ± 0.8 min and 0.4 ± 0.2 min, respectively. Compared to the delay of the conventional alarm this corresponds to a mean time reduction of 76% (P = 0.003) and 95% (P = 0.001), respectively. In the validation scenarios the overall mean ± SD alarm delay of the regression and SD algorithms were respectively 1.8 ± 1.6 min and 0.3 ± 0.2 min, corresponding to a mean time reduction of 77% and 95%. In the multi-pump scenarios a correlation > 0.8 between multiple pump pressures after initial occlusion detection by the SD algorithm had a mean ± SD alarm delay of 0.4 ± 0.2 min. In 2 out of the 9 validation scenarios an occlusion was not detected by the regression algorithm before a conventional occlusion alarm occurred. Otherwise no occlusions were missed. CONCLUSIONS: In single pumps, both the regression and SD algorithm considerably reduced alarm delay compared to conventional pressure limit-based detection. The SD algorithm appeared to be more robust than the regression algorithm. For multiple pumps the correlation algorithm reliably detected co-occlusions. The latter may be used to localize the segment of tubing in which the occlusion occurs. Trial registration Not applicable.


Subject(s)
Infusion Pumps , Pharmaceutical Preparations , Algorithms , Equipment Failure , Humans , Pressure
2.
Environ Pollut ; 231(Pt 1): 123-133, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28797901

ABSTRACT

Microplastics are widespread in aquatic environments and can be ingested by a wide range of organisms. They can also be transferred along food webs. Estuaries and other tidal wetlands may be particularly prone to this type of pollution due to their particular hydrological characteristics and sewage input, but few studies have compared wetlands with different anthropogenic pressure. Furthermore, there is no information on microplastic transfer to secondary intertidal consumers such as shorebirds. We analysed intertidal sediments, macroinvertebrates and shorebirds, from three important wetlands along the Eastern Atlantic (Tejo estuary, Portugal; Banc d'Arguin, Mauritania and Bijagós archipelago, Guinea-Bissau), in order to evaluate the prevalence and transfer of microplastics along the intertidal food web. We further investigated variables that could explain the distribution of microplastics within the intertidal areas of the Tejo estuary. Microfibers were recorded in a large proportion of sediment samples (91%), macroinvertebrates (60%) and shorebird faeces (49%). µ-FTIR analysis indicated only 52% of these microfibers were composed of synthetic polymers (i.e. plastics). Microfiber concentrations were generally higher in the Tejo and lower in the Bijagós, with intermediate values for Banc d'Arguin, thus following a latitudinal gradient. Heavier anthropogenic pressure in the Tejo explains this pattern, but the relatively high concentrations in a pristine site like the Banc d'Arguin demonstrate the spread of pollution in the oceans. Similar microfiber concentrations in faeces of shorebirds with different foraging behaviour and similar composition of fibres collected from invertebrate and faeces suggest shorebirds mainly ingest microfibers through their prey, confirming microfiber transfer along intertidal food webs. Within the Tejo estuary, concentration of microfibers in the sediment and bivalves were positively related with the percentage of fine sediments and with the population size of the closest township, suggesting that hydrodynamics and local domestic sewage are the main factors influencing the distribution of microfibers.


Subject(s)
Environmental Monitoring , Invertebrates/metabolism , Plastics/analysis , Water Pollutants, Chemical/analysis , Wetlands , Africa, Western , Animals , Birds/metabolism , Estuaries , Europe , Food Chain , Geologic Sediments/chemistry , Oceans and Seas , Portugal , Water Pollutants, Chemical/metabolism
3.
PeerJ ; 4: e2517, 2016.
Article in English | MEDLINE | ID: mdl-27703860

ABSTRACT

Many migratory bird species show high levels of site fidelity to their wintering sites, which confers advantages due to prior knowledge, but may also limit the ability of the individual to move away from degrading sites or to detect alternative foraging opportunities. Winter site fidelity often varies among age groups, but sexual differences have seldom been recorded in birds. We studied a population of individually colour-marked sanderlings wintering in and around the Tejo estuary, a large estuarine wetland on the western coast of Portugal. For 160 individuals, sighted a total of 1,249 times between November 2009 and March 2013, we calculated the probability that they moved among five distinct wintering sites and how this probability is affected by distance between them. To compare site fidelity among age classes and sexes, as well as within the same winter and over multiple winters, we used a Site Fidelity Index (SFI). Birds were sexed using a discriminant function based on biometrics of a large set of molecularly sexed sanderlings (n = 990). The vast majority of birds were observed at one site only, and the probability of the few detected movements between sites was negatively correlated with the distance among each pair of sites. Hardly any movements were recorded over more than 15 km, suggesting small home ranges. SFI values indicated that juveniles were less site-faithful than adults which may reflect the accumulated knowledge and/or dominance of older animals. Among adults, females were significantly less site faithful than males. A sexual difference in winter site fidelity is unusual in shorebirds. SFI values show site-faithfulness is lower when multiple winters were considered, and most birds seem to chose a wintering site early in the season and use that site throughout the winter. Sanderlings show a very limited tendency to explore alternative wintering options, which might have implications for their survival when facing habitat change or loss (e.g., like severe beach erosion as can be the case at one of the study sites).

4.
J Vector Ecol ; 36(2): 279-91, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22129399

ABSTRACT

Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p<0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the model's ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities.


Subject(s)
Anopheles/physiology , Insect Vectors , Malaria/transmission , Models, Theoretical , Population Density , Algorithms , Animals , Environmental Monitoring/methods , Life Cycle Stages , Population Growth , Portugal , Remote Sensing Technology , Spacecraft , Temperature
5.
J Anim Ecol ; 79(3): 522-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20070431

ABSTRACT

1. During migratory stopovers, animals are under strong time stress and need to maximize intake rates. We examine how foragers react to resource depletion by studying the foraging ecology and foraging site selection of black-tailed godwits Limosa l. limosa staging in rice fields during their northward migration stopover (January-March 2007). 2. We analysed godwit abundance and foraging behaviour, sampled the availability of rice in the fields and used the functional response model to predict the giving-up density (GUD) of rice kernels when godwits should give up a rice field. Sightings of individually colour-marked birds were used to verify whether individuals moving between rice fields confirmed the predicted GUD. 3. Black-tailed godwit intake rates at different rice densities fitted Holling's functional response curve. The predicted GUD of rice necessary to balance allometric estimates of daily energy expenditure (DEE) and measured time budgets were confirmed by GUD measured in the field. 4. Individually marked birds moved towards rice fields with higher rather than lower rice densities more often than randomly expected. These birds increased the measured intake rates after this move. 5. Godwit foraging caused a decrease in the rice density of individual fields during the stopover period. Despite this, overall intake rates remained constant as godwits reacted to resource depletion by moving to a new foraging site as soon as their intake rate falls below the required levels to achieve DEE.


Subject(s)
Animal Migration/physiology , Charadriiformes/physiology , Energy Metabolism/physiology , Feeding Behavior/physiology , Oryza , Animals , Population Density , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...