Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (204)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38407332

ABSTRACT

This research delves into the consequences of consistent pinprick stimulation on preterm offspring to ascertain its long-term implications for pain sensitivity. The primary objective of this protocol was to investigate the impact of neonatal pinprick stimuli on the pain threshold in the later stages of life using a preterm rat model. By establishing this model, we aim to advance the research on understanding and managing early postnatal pain associated with prematurity. The findings of this study indicate that while the baseline thresholds to mechanical stimuli remained unaffected, there was a notable increase in mechanical hypersensitivity following complete Freund's adjuvant (CFA) injection in adult rats. Interestingly, compared with male rats, female rats demonstrated heightened inflammatory hypersensitivity. Notably, maternal behavior, the weight of the litters, and the growth trajectory of the offspring remained unchanged by the stimulation. The manifestation of altered nociceptive responses in adulthood after neonatal painful stimuli could be indicative of changes in sensory processing and the functioning of glucocorticoid receptors. However, further research is needed to understand the underlying mechanisms involved and to develop interventions for the consequences of prematurity and neonatal pain in adults.


Subject(s)
Hypersensitivity , Pain , Female , Male , Animals , Rats , Pain/etiology , Pain Threshold , Sensation , Pain Management , Freund's Adjuvant
2.
Behav Brain Res ; 424: 113803, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35189173

ABSTRACT

INTRODUCTION: Morphological reorganization in the neural networks of the medial prefrontal cortex (mPFC) may be involved in the development of chronic neuropathic pain (NP). OBJECTIVES: We investigated whether inactivation and neurostimulation of the infralimbic division (IFL) of the mPFC alter electroacupuncture-induced analgesia (EIA) at 2 Hz and 2/100 Hz in animals with chronic NP. METHODS: Wistar rats were submitted to chronic constrictor injury of the ischiadicus nerve (CCI). Von Frey and acetone tests were performed to evaluate mechanical or cold allodynia. Animals were submitted to electroacupuncture (EA) at 2 Hz and 2/100 Hz for 20 min. After EA, the IFL cortex synaptic contacts were inactivated by cobalt chloride (200 nL of 1.0 mM CoCl2). Neurostimulation of the IFL cortex was also performed at 20 µA for 15 s, after EA, using a deep brain stimulation device. RESULTS: EA at 2 Hz and 2/100 Hz attenuated mechanical or cold allodynia in CCI rats. Microinjection of CoCl2 into the IFL division of the mPFC blocked the EA effect. EA at 2 Hz and 2/100 Hz, in association with neurostimulation of the IFL cortex, attenuated mechanical and thermal allodynia. CONCLUSION: EA induces antinociception in CCI rats. The analgesia was potentiated in association with neurostimulation in the IFL division of the mPFC.


Subject(s)
Chronic Pain , Electroacupuncture , Neuralgia , Animals , Chronic Pain/therapy , Hyperalgesia/therapy , Neuralgia/therapy , Prefrontal Cortex , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...