Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 257(Pt 2): 128600, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065448

ABSTRACT

The development of new coatings based on a biopolymer, epichlorohydrin-modified alginate, and alginate-epichlorohydrin-SrTiO3 nanocomposites incorporating SrTiO3 (STO) nanoparticles in the alginate (Alg) matrix (Alg-Ep-STO), has been addressed in this study. Various characterization techniques were employed to analyze the prepared compounds, including X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), as well as surface analysis methods such as Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). Furthermore, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) methods were used to evaluate corrosion inhibition and protection durability. The results demonstrate that the incorporation of STO nanoparticles into the alginate matrix with epichlorohydrin significantly improved the metal's resistance to corrosion. The experimental findings received reinforcement from various computational methods, including density functional theory (DFT), Molecular Dynamics (MD) and Monte Carlo (MC) simulations, which were employed to investigate the interactions between the Alg-Ep-STO nanocomposite and the copper surface. The computational outcomes revealed that the Alg-Ep-STO nanocomposite exhibits robust adhesion to the copper surface, maintaining a flat orientation, with its alignment being notably influenced by the presence of STO nanoparticles.


Subject(s)
Copper , Sodium Chloride , Alginates/chemistry , Epichlorohydrin , Models, Theoretical
2.
RSC Adv ; 12(18): 10895-10910, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425059

ABSTRACT

Undoped Ba(Zr0.9Ti0.1)O3 and rare-earth-doped (Ba1-x RE2x/3)(Zr0.9Ti0.1)O3 (RE3+ = La3+, Sm3+) perovskite compounds were synthesized by the conventional solid-state reaction route. Both solubility of rare earth in Ba(Zr0.9Ti0.1)O3 and formation of perovskite structure with the Pm3̄m space group were verified by the Rietveld method using X-ray diffraction data. SEM micrographs of all ceramics revealed high densification, low porosity, and even homogeneous grain distribution of various dimensions over the total surface. The frequency-dependent electrical properties were analyzed by complex impedance spectroscopy. Different types of studies such as the Nyquist plot, real and imaginary part of impedance, conductivity, modulus formalism, and charge carriers activation energy were used to explain the microstructure-electrical property relationships.

3.
Carbohydr Polym ; 276: 118737, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34823773

ABSTRACT

In this paper, a new deep eutectic solvent (DES) has been successfully synthesized that is based on benzyltriethylammonium bromide as a hydrogen bond acceptor (HBA) and urea as a hydrogen bond donor (HBD). However, its usability in modifying cellulose derivatives, especially acylating hydroxyethylcellulose (HEC) was investigated. The chemical modification (acetylation) of HEC was carried out in BTEAB/urea DES system without any additional conventional solvent or catalyst. However, the proposed structure of acetylated HEC (HECA) was confirmed according to the structural spectra analyses FTIR-ATR, 1H, 13C, and APT-NMR. The crystalline behavior of acetylated and unmodified HEC in the DES system has been evaluated using XRD patterns, where the thermal stability was evaluated basing on the TD-TGA thermograms. Hence, SEM images and EDX spectra were recorded to prove the changes that are expected at the morphological level and elemental profile. Yet, the nanometric sheets aspect was observed. The Functional Density Theory (DFT) was investigated as a useful computational tool to understand mechanism and donor-acceptor interactions. The topological parameters (electron density Laplacian, kinetic energy density, potential energy density, and energy density) at the bond critical points (BCP), between TBEAB and urea, are deducted according to Quantum Bader's theory, and Atoms-in-molecules (AIM). The non-covalent interactions and steric effect in the DES system were studied using the reduced density gradient isosurface (RDG). Theoretical and computational calculations revealed that the H-bonds and the electrostatic coexist, as predominant interactions in the BTEAB-based DES resulting chemical structure, and mechanism formation. The physical interactions between the component entities of DES lead to a new equilibrium that is more stable than that of HBA and HBD in their separate states.

SELECTION OF CITATIONS
SEARCH DETAIL
...