Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 2(12): pgad338, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38059262

ABSTRACT

The rapid adoption of glyphosate-resistant crops at the end of the 20th century caused a simplification of weed management that relied heavily on glyphosate for weed control. However, the effectiveness of glyphosate has diminished. A greater understanding of trends related to glyphosate use will shed new light on weed adaptation to a product that transformed global agriculture. Objectives were to (1) quantify the change in weed control efficacy from postemergence (POST) glyphosate use on troublesome weeds in corn and soybean and (2) determine the extent to which glyphosate preceded by a preemergence (PRE) improved the efficacy and consistency of weed control compared to glyphosate alone. Herbicide evaluation trials from 24 institutions across the United States of America and Canada from 1996 to 2021 were compiled into a single database. Two subsets were created; one with glyphosate applied POST, and the other with a PRE herbicide followed by glyphosate applied POST. Within each subset, mean and variance of control ratings for seven problem weed species were regressed over time for nine US states and one Canadian province. Mean control with POST glyphosate alone decreased over time while variability in control increased. Glyphosate preceded by a labeled PRE herbicide showed little change in mean control or variability in control over time. These results illustrate the rapid adaptation of agronomically important weed species to the paradigm-shifting product glyphosate. Including more diversity in weed management systems is essential to slowing weed adaptation and prolonging the usefulness of existing and future technologies.

2.
Sci Rep ; 8(1): 10483, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29992952

ABSTRACT

Glyphosate is an important herbicide worldwide, but its efficacy has been compromised where weed species have evolved glyphosate resistance. To better understand evolutionary outcomes of continued and strong selection from glyphosate exposure, we characterized variation in resistance in self-pollinating Conyza canadensis (horseweed) in Ohio and Iowa, where glyphosate resistance was first reported in 2002 and 2011, respectively. In 2015, we collected seeds from a total of 74 maternal plants (biotypes) from no-till soybean fields vs. non-agricultural sites in each state, using one representative plant per site. Young plants from each biotype were sprayed with glyphosate rates of 0x, 1x (840 g ae ha-1), 8x, 20x, or 40x. Resistant biotypes with at least 80% survival at each dosage were designated as R1 (1x), R2 (8x), R3 (20x), or R4 (40x). Nearly all Ohio agricultural biotypes were R4, as were 62% of biotypes from the non-agricultural sites. In Iowa, R4 biotypes were clustered in the southeastern soybean fields, where no-till agriculture is more common, and 45% of non-agricultural biotypes were R1-R4. Our results show that resistance levels to glyphosate can be very high (at least 40x) in both states, and that non-agricultural sites likely serve as a refuge for glyphosate-resistant biotypes.


Subject(s)
Conyza/drug effects , Glycine/analogs & derivatives , Herbicide Resistance , Agriculture/methods , Glycine/pharmacology , Herbicides/pharmacology , Iowa , Ohio , Plants/drug effects , Seeds , Glycine max/drug effects , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...