Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(2-2): 025310, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932590

ABSTRACT

We present a variational Monte Carlo method that solves the nuclear many-body problem in the occupation number formalism exploiting an artificial neural network representation of the ground-state wave function. A memory-efficient version of the stochastic reconfiguration algorithm is developed to train the network by minimizing the expectation value of the Hamiltonian. We benchmark this approach against widely used nuclear many-body methods by solving a model used to describe pairing in nuclei for different types of interaction and different values of the interaction strength. Despite its polynomial computational cost, our method outperforms coupled-cluster and provides energies that are in excellent agreement with the numerically exact full configuration-interaction values.

2.
Phys Rev Lett ; 127(2): 022502, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34296893

ABSTRACT

The complexity of many-body quantum wave functions is a central aspect of several fields of physics and chemistry where nonperturbative interactions are prominent. Artificial neural networks (ANNs) have proven to be a flexible tool to approximate quantum many-body states in condensed matter and chemistry problems. In this work we introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei, and approximately solve the nuclear many-body Schrödinger equation. Using efficient stochastic sampling and optimization schemes, our approach extends pioneering applications of ANNs in the field, which present exponentially scaling algorithmic complexity. We compute the binding energies and point-nucleon densities of A≤4 nuclei as emerging from a leading-order pionless effective field theory Hamiltonian. We successfully benchmark the ANN wave function against more conventional parametrizations based on two- and three-body Jastrow functions, and virtually exact Green's function Monte Carlo results.

3.
Int J Legal Med ; 134(6): 2319-2334, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32681208

ABSTRACT

Ageing of the global population represents a challenge for national healthcare systems and healthcare professionals, including medico-legal experts, who assess personal damage in an increasing number of older people. Personal damage evaluation in older people is complex, and the scarcity of evidence is hindering the development of formal guidelines on the subject. The main objectives of the first multidisciplinary Consensus Conference on Medico-Legal Assessment of Personal Damage in Older People were to increase knowledge on the subject and establish standard procedures in this field. The conference, organized according to the guidelines issued by the Italian National Institute of Health (ISS), was held in Bologna (Italy) on June 8, 2019 with the support of national scientific societies, professional organizations, and stakeholders. The Scientific Technical Committee prepared 16 questions on 4 thematic areas: (1) differences in injury outcomes in older people compared to younger people and their relevance in personal damage assessment; (2) pre-existing status reconstruction and evaluation; (3) medico-legal examination procedures; (4) multidimensional assessment and scales. The Scientific Secretariat reviewed relevant literature and documents, rated their quality, and summarized evidence. During conference plenary public sessions, 4 pairs of experts reported on each thematic area. After the last session, a multidisciplinary Jury Panel (15 members) drafted the consensus statements. The present report describes Conference methods and results, including a summary of evidence supporting each statement, and areas requiring further investigation. The methodological recommendations issued during the Conference may be useful in several contexts of damage assessment, or to other medico-legal evaluation fields.


Subject(s)
Accidental Injuries , Aging , Forensic Medicine , Aged , Aged, 80 and over , Functional Status , Geriatric Assessment , Health Status , Humans , Italy , Liability, Legal
4.
Phys Rev Lett ; 122(18): 182501, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144867

ABSTRACT

The first laser spectroscopic determination of the change in the nuclear charge radius for a five-electron system is reported. This is achieved by combining high-accuracy ab initio mass-shift calculations and a high-accuracy measurement of the isotope shift in the 2s^{2}2p ^{2}P_{1/2}→2s^{2}3s ^{2}S_{1/2} ground state transition in boron atoms. Accuracy is increased by orders of magnitude for the stable isotopes ^{10,11}B and the results are used to extract their difference in the mean-square charge radius ⟨r_{c}^{2}⟩^{11}-⟨r_{c}^{2}⟩^{10}=-0.49(12) fm^{2}. The result is qualitatively explained by a possible cluster structure of the boron nuclei and quantitatively used to benchmark new ab initio nuclear structure calculations using the no-core shell model and Green's function Monte Carlo approaches. These results are the foundation for a laser spectroscopic determination of the charge radius of the proton-halo candidate ^{8}B.

5.
Phys Rev Lett ; 116(19): 192501, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27232018

ABSTRACT

The formalism based on factorization and nuclear spectral functions has been generalized to treat transition matrix elements involving two-nucleon currents, whose contribution to the nuclear electromagnetic response in the transverse channel is known to be significant. We report the results of calculations of the inclusive electron-carbon cross section, showing that the inclusion of processes involving two-nucleon currents appreciably improves the agreement between theory and data in the dip region, between the quasielastic and Δ-production peaks. The relation to approaches based on the independent particle of the nucleus and the implications for the analysis of flux-integrated neutrino-nucleus cross sections are discussed.

6.
Phys Rev Lett ; 114(9): 092301, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793808

ABSTRACT

The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the grounds for the so-called hyperon puzzle. We calculate the equation of state and the neutron star mass-radius relation of an infinite systems of neutrons and Λ particles by using the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon interaction plays a fundamental role in the softening of the equation of state and for the consequent reduction of the predicted maximum mass. We have considered two different models of three-body force that successfully describe the binding energy of medium mass hypernuclei. Our results indicate that they give dramatically different results on the maximum mass of neutron stars, not necessarily incompatible with the recent observation of very massive neutron stars. We conclude that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the role of hyperons in neutron stars.

SELECTION OF CITATIONS
SEARCH DETAIL
...