Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2833, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198197

ABSTRACT

Amyloid plaques composed of Aß fibrils are a hallmark of Alzheimer's disease (AD). However, the molecular architecture of amyloid plaques in the context of fresh mammalian brain tissue is unknown. Here, using cryogenic correlated light and electron tomography we report the in situ molecular architecture of Aß fibrils in the AppNL-G-F familial AD mouse model containing the Arctic mutation and an atomic model of ex vivo purified Arctic Aß fibrils. We show that in-tissue Aß fibrils are arranged in a lattice or parallel bundles, and are interdigitated by subcellular compartments, extracellular vesicles, extracellular droplets and extracellular multilamellar bodies. The Arctic Aß fibril differs significantly from an earlier AppNL-F fibril structure, indicating a striking effect of the Arctic mutation. These structural data also revealed an ensemble of additional fibrillar species, including thin protofilament-like rods and branched fibrils. Together, these results provide a structural model for the dense network architecture that characterises ß-amyloid plaque pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Alzheimer Disease/genetics , Brain/metabolism , Mutation , Mammals/metabolism
2.
Faraday Discuss ; 240(0): 114-126, 2022 11 08.
Article in English | MEDLINE | ID: mdl-35959706

ABSTRACT

Resolving atomic structures of isolated proteins has uncovered mechanisms and fundamental processes in biology. However, many functions can only be tested in the context of intact cells and tissues that are many orders of magnitude larger than the macromolecules on which they depend. Therefore, methods that interrogate macromolecular structure in situ provide a means of directly relating structure to function across length scales. Here, we developed several workflows using cryogenic correlated light and electron microscopy (cryoCLEM) and electron tomography (cryoET) that can bridge this gap to reveal the molecular infrastructure that underlies higher order functions within cells and tissues. We also describe experimental design considerations, including cryoCLEM labelling, sample preparation, and quality control, for determining the in situ molecular architectures within native, hydrated cells and tissues.


Subject(s)
Electron Microscope Tomography , Electrons , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Microscopy, Electron , Macromolecular Substances/chemistry
3.
Ageing Res Rev ; 47: 67-79, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30009973

ABSTRACT

Alzheimer's disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid ß peptide (Aß) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aß generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel 'hypothesis' that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aß and/or oxidative damage to AD pathologies. The 'hypothesis' based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia.


Subject(s)
Aging/metabolism , Aging/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Oxidative Stress/physiology , TRPM Cation Channels/biosynthesis , Aging/genetics , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Dementia/genetics , Dementia/metabolism , Dementia/pathology , Humans , TRPM Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...