Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 355(6324): 503-507, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28104795

ABSTRACT

Two-dimensional (2D) materials offer a promising platform for exploring condensed matter phenomena and developing technological applications. However, the reduction of material dimensions to the atomic scale poses a challenge for traditional measurement and interfacing techniques that typically couple to macroscopic observables. We demonstrate a method for probing the properties of 2D materials via nanometer-scale nuclear quadrupole resonance (NQR) spectroscopy using individual atomlike impurities in diamond. Coherent manipulation of shallow nitrogen-vacancy (NV) color centers enables the probing of nanoscale ensembles down to approximately 30 nuclear spins in atomically thin hexagonal boron nitride (h-BN). The characterization of low-dimensional nanoscale materials could enable the development of new quantum hybrid systems, combining atomlike systems coherently coupled with individual atoms in 2D materials.

2.
Science ; 351(6275): 836-41, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26847544

ABSTRACT

Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/analysis , Quantum Theory , Sensitivity and Specificity
3.
Phys Rev Lett ; 113(19): 197601, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25415924

ABSTRACT

We demonstrate a method of magnetic resonance imaging with single nuclear-spin sensitivity under ambient conditions. Our method employs isolated electronic-spin quantum bits (qubits) as magnetic resonance "reporters" on the surface of high purity diamond. These spin qubits are localized with nanometer-scale uncertainty, and their quantum state is coherently manipulated and measured optically via a proximal nitrogen-vacancy color center located a few nanometers below the diamond surface. This system is then used for sensing, coherent coupling, and imaging of individual proton spins on the diamond surface with angstrom resolution. Our approach may enable direct structural imaging of complex molecules that cannot be accessed from bulk studies. It realizes a new platform for probing novel materials, monitoring chemical reactions, and manipulation of complex systems on surfaces at a quantum level.


Subject(s)
Magnetic Resonance Imaging/methods , Protons , Quantum Dots/chemistry , Diamond/chemistry , Quantum Theory
4.
Nano Lett ; 14(11): 6443-8, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25333198

ABSTRACT

We demonstrate an all-optical method for magnetic sensing of individual molecules in ambient conditions at room temperature. Our approach is based on shallow nitrogen-vacancy (NV) centers near the surface of a diamond crystal, which we use to detect single paramagnetic molecules covalently attached to the diamond surface. The manipulation and readout of the NV centers is all-optical and provides a sensitive probe of the magnetic field fluctuations stemming from the dynamics of the electronic spins of the attached molecules. As a specific example, we demonstrate detection of a single paramagnetic molecule containing a gadolinium (Gd(3+)) ion. We confirm single-molecule resolution using optical fluorescence and atomic force microscopy to colocalize one NV center and one Gd(3+)-containing molecule. Possible applications include nanoscale and in vivo magnetic spectroscopy and imaging of individual molecules.

5.
Phys Rev Lett ; 112(15): 150802, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24785020

ABSTRACT

We propose and analyze a new approach based on quantum error correction (QEC) to improve quantum metrology in the presence of noise. We identify the conditions under which QEC allows one to improve the signal-to-noise ratio in quantum-limited measurements, and we demonstrate that it enables, in certain situations, Heisenberg-limited sensitivity. We discuss specific applications to nanoscale sensing using nitrogen-vacancy centers in diamond in which QEC can significantly improve the measurement sensitivity and bandwidth under realistic experimental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...