Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Auton Neurosci ; 133(1): 19-34, 2007 Apr 30.
Article in English | MEDLINE | ID: mdl-17113358

ABSTRACT

The parasympathetic (PNS) and sympathetic (SNS) and nervous systems densely innervate the exocrine pancreas. Efferent PNS pathways, consisting of central dorsal motor nucleus of the vagus (DMV) and peripheral pancreatic neurons, stimulate exocrine secretion. The DMV integrates cortical (olfactory, gustatory) and gastric, and intestinal vagal afferent input to determine central PNS outflow during cephalic, gastric and intestinal phases of exocrine secretion. Pancreatic neurons integrate DMV input with peripheral enteric, sympathetic, and, possibly, afferent axon reflexes to determine final PNS input to all exocrine effectors. Gut and islet hormones appear to modulate both central and peripheral PNS pathways. Preganglionic sympathetic neurons in the intermediolateral (IML) column of the spinal cord receive inputs from brain centers, some shared with the PNS, and innervate postganglionic neurons, mainly in prevertebral ganglia. Sympathetic innervation of the exocrine pancreas is primarily indirect, and inhibits secretion by decreasing blood flow and inhibiting transmission in pancreatic ganglia. Interactions between SNS and PNS pathways appear to occur in brain, spinal cord, pancreatic and prevertebral ganglia, and at neuroeffector synapses. Thus, the PNS and SNS pathways regulating the exocrine pancreas are directly or indirectly antagonistic at multiple sites: the state of exocrine secretion reflects the balance of these influences. Despite over a century of study, much remains to be understood about the connections of specific neurons forming pancreatic pathways, their processes of neurotransmission, and how disruption of these pathways contributes to pancreatic disease.


Subject(s)
Autonomic Pathways/physiology , Efferent Pathways/physiology , Pancreas/metabolism , Animals , Humans , Models, Biological , Neurons/classification , Neurons/physiology , Pancreas/cytology
2.
Auton Neurosci ; 122(1-2): 45-57, 2005 Oct 30.
Article in English | MEDLINE | ID: mdl-16126010

ABSTRACT

Pancreatic ganglia contain noradrenergic nerve terminals whose role in ganglionic transmission is unknown. Intracellular recordings from rabbit pancreatic neurons were used to study the effects of alpha-adrenergic agonists and antagonists on ganglionic transmission and to determine if endogenously released norepinephrine contributed to synaptic depression. Significant regional differences in alpha adrenergic effects were observed. In neurons from ganglia of the head/neck region norepinephrine or selective alpha(2) agonists presynaptically inhibited ganglionic transmission and this effect was antagonized by the alpha(2) antagonist yohimbine. In the majority of cells membrane hyperpolarization accompanied presynaptic inhibition during superfusion of alpha(2) agonists. Repetitive nerve stimulation evoked a presynaptic post-train depression (PTD) of ganglionic transmission in all neurons tested. A combination of nisoxetine (selective inhibitor of the norepinephrine transporter) and tyramine (releaser of endogenous catecholamines) increased PTD. Pretreatment with clonidine inhibited synaptic transmission and abolished PTD while yohimbine did not affect it. Pretreatment with guanethidine (>or=3.5 h) also failed reduce PTD while neurons unresponsive to alpha(2) adrenoceptor agonists routinely exhibited PTD, implying the presence of other inhibitory neurotransmitters sharing a common presynaptic mechanism with alpha(2) agonists. In the majority of neurons from ganglia of the body region superfusion of norepinephrine or the selective alpha(1) agonist phenylephrine evoked membrane depolarization and facilitated ganglionic transmission. These effects were antagonized by the alpha(1) antagonist prazosin. The remaining neurons exhibited either alpha(2)-mediated synaptic inhibition or no-response. In conclusion, inhibitory alpha(2) and excitatory alpha(1) adrenoceptors exist in pancreatic ganglia and predominate in the head/neck and body, respectively. Norepinephrine, released during repetitive nerve stimulation, may contribute to synaptic depression in the head/neck region and appeared to share a common mechanism with other, unidentified neurotransmitters mediating synaptic depression in both regions. These differences indicate a functional heterogeneity of pancreatic sympathetic innervation that may reflect the reported regional differences in exocrine and endocrine cells.


Subject(s)
Ganglia, Autonomic/metabolism , Norepinephrine/metabolism , Pancreas/innervation , Synaptic Transmission/physiology , Adrenergic alpha-Agonists/pharmacology , Animals , Clonidine/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Fluoxetine/analogs & derivatives , Fluoxetine/pharmacology , Ganglia, Autonomic/drug effects , Guanethidine/pharmacology , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Pancreas/drug effects , Phenylephrine/pharmacology , Rabbits , Receptors, Adrenergic/drug effects , Receptors, Adrenergic/metabolism , Synaptic Transmission/drug effects , Yohimbine/pharmacology
3.
Auton Neurosci ; 119(1): 36-47, 2005 Apr 29.
Article in English | MEDLINE | ID: mdl-15893706

ABSTRACT

The extrinsic innervation of the pancreas converges on a plexus of intrinsic pancreatic ganglia whose cholinergic neurons innervate acini, ducts, islets and blood vessels. Therefore, understanding ganglionic transmission is essential for understanding neural control of pancreatic secretion. Intracellular recordings of nicotinic fast excitatory postsynaptic potentials (fEPSPs) and action potentials (APs) were used to characterize and compare transmission in ganglia from the head/neck and body regions of the rabbit pancreas. Paired-pulse facilitation (PPF) or depression (PPD) of fEPSPs was observed in ganglia from both regions with PPF peaking and disappearing at shorter inter-stimulus intervals than PPD. PPF was most frequent in the head/neck (60%) and PPD (50%) in the body. Repetitive stimulation (10 Hz/5 s) evoked multiple forms of mid- and post-train plasticity. Facilitation during the first 1-2 s of train stimulation was reduced or reversed with continued stimulation due to development of synaptic depression and mid-train depression was of greater magnitude in the head/neck region. A brief (approximately 10 s) post-train augmentation was followed by a 1-2 min post-train depression that appeared to result from inhibition of ACh release. Regional differences in the frequency, magnitude, or duration of all forms of synaptic plasticity suggested regional differences in the extrinsic innervation patterns and possibly the function of pancreatic ganglia. In conclusion, rabbit pancreatic ganglia exhibit multiple forms of short-term synaptic plasticity that markedly alter the probability of postsynaptic firing, consistent with these ganglia being critical sites of synaptic integration and autonomic regulation of pancreatic secretion.


Subject(s)
Ganglia, Autonomic/physiology , Neuronal Plasticity/physiology , Pancreas/innervation , Pancreas/physiology , Synapses/physiology , Animals , Female , In Vitro Techniques , Male , Rabbits , Synaptic Transmission/physiology , Time Factors
4.
Auton Neurosci ; 117(2): 87-96, 2005 Feb 07.
Article in English | MEDLINE | ID: mdl-15664561

ABSTRACT

Sympathetic nerve stimulation indirectly regulates pancreatic endocrine and exocrine secretion, in part, through actions on the cholinergic parasympathetic innervation of the secretory tissues. Earlier work identified noradrenergic nerves in pancreatic ganglia and demonstrated the effects of exogenous norepinephrine (NE) on synaptic transmission but no quantitative studies of ganglionic NE content and release exist. Therefore, the distribution and density of catecholamine (CA)-containing nerves in rabbit pancreatic ganglia were studied using paraformaldehyde/glutaraldehyde (FAGLU) staining and HPLC analysis of CA concentrations. Neural release of [3H]NE was measured in ganglia isolated from the head/neck or body regions of the pancreas. CA-containing nerves densely innervated most ganglia (86%) from both regions, while neural and non-neural CA-containing cell bodies were rarely found. Ganglia from the head/neck region contained significantly higher concentrations of NE. Both 40 mM K+ and veratridine evoked Ca2+-dependent [3H]NE release and tetrodotoxin inhibited 80% of veratridine-stimulated release. omega-Conotoxin GVIA alone antagonized veratridine-stimulated release by 40% but the addition of nifedipine or omega-agatoxin IVA caused no further inhibition. There were no apparent regional differences in the Ca2+-dependence or toxin-sensitivity of NE release. In conclusion, ganglia throughout the rabbit pancreas receive a dense, functional noradrenergic innervation and NE release is dependent upon N- but not P/Q- or L-type voltage-dependent Ca2+ channels. These noradrenergic nerves may indirectly regulate pancreatic secretion through actions on ganglionic transmission.


Subject(s)
Ganglia/metabolism , Norepinephrine/metabolism , Pancreas/innervation , Analysis of Variance , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Chromatography, High Pressure Liquid/methods , Dose-Response Relationship, Drug , Female , Ganglia/drug effects , Ganglia, Sympathetic/metabolism , Immunohistochemistry/methods , In Vitro Techniques , Male , Potassium Chloride/pharmacology , Rabbits , Tetrodotoxin/pharmacology , Tritium/metabolism , Veratridine/pharmacology
5.
Pancreas ; 29(3): 218-24, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15367888

ABSTRACT

OBJECTIVES: Norepinephrine (NE), dopamine (DA), epinephrine (Epi), and 5-hydroxytryptamine (5-HT) all modulate pancreatic exocrine secretion, yet their concentrations in specific tissues of the exocrine pancreas are unknown. METHODS: Concentrations of catecholamines and 5-HT in rabbit pancreatic ganglia, acini, ducts and ampullae, and arteries and veins were measured using HPLC. RESULTS: Concentrations of NE in ganglia from the head/neck region were significantly higher than those from the body (1620 +/- 220 vs. 778 +/- 179 pmol/mg protein). Acini contained little NE, DA, or 5-HT (9 +/- 2, 0.9 +/- 0.2, 13 +/- 5 pmol/mg protein). Ducts and ampullae contained NE (314 +/- 74 and 156 +/- 24 pmol/mg protein), DA (43 +/- 14 and 13 +/- 4 pmol/mg protein), Epi (63 +/- 29 and 39 +/- 6 pmol/mg protein), and 5-HT (696 +/- 151 and 3563 +/- 288 pmol/mg protein). Arteries and veins contained the highest concentrations of NE (1962 +/- 463 and 736 +/- 80 pmol/mg protein, respectively). CONCLUSIONS: Pancreatic ganglia and blood vessels, rather than acini, are the main sites of noradrenergic sympathetic innervation of the rabbit exocrine pancreas. These nerves preferentially target ganglionic transmission in the head/neck versus the body. Serotonergic nerves provide little or no innervation of rabbit pancreatic ganglia or acini.


Subject(s)
Catecholamines/analysis , Pancreas, Exocrine/chemistry , Serotonin/analysis , Animals , Blood Vessels/chemistry , Chromatography, High Pressure Liquid , Female , Ganglia, Autonomic/chemistry , Male , Organ Specificity , Pancreas, Exocrine/blood supply , Pancreas, Exocrine/innervation , Pancreatic Ducts/chemistry , Rabbits , Sympathetic Nervous System/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL