Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572327

ABSTRACT

Several secreted proteins from helminths (parasitic worms) have been shown to have immunomodulatory activities. Asparaginyl-tRNA synthetases are abundantly secreted in the filarial nematode Brugia malayi (BmAsnRS) and the parasitic flatworm Schistosoma japonicum (SjAsnRS), indicating a possible immune function. The suggestion is supported by BmAsnRS alleviating disease symptoms in a T-cell transfer mouse model of colitis. This immunomodulatory function is potentially related to an N-terminal extension domain present in eukaryotic AsnRS proteins but few structure/function studies have been done on this domain. Here we have determined the three-dimensional solution structure of the N-terminal extension domain of SjAsnRS. A protein containing the 114 N-terminal amino acids of SjAsnRS was recombinantly expressed with isotopic labelling to allow structure determination using 3D NMR spectroscopy, and analysis of dynamics using NMR relaxation experiments. Structural comparisons of the N-terminal extension domain of SjAsnRS with filarial and human homologues highlight a high degree of variability in the ß-hairpin region of these eukaryotic N-AsnRS proteins, but similarities in the disorder of the C-terminal regions. Limitations in PrDOS-based intrinsically disordered region (IDR) model predictions were also evident in this comparison. Empirical structural data such as that presented in our study for N-SjAsnRS will enhance the prediction of sequence-homology based structure modelling and prediction of IDRs in the future.Communicated by Ramaswamy H. Sarma.

3.
Nat Commun ; 10(1): 1019, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30833553

ABSTRACT

The αß T cell receptor (TCR) repertoire on mature T cells is selected in the thymus, but the basis for thymic selection of MHC-restricted TCRs from a randomly generated pre-selection repertoire is not known. Here we perform comparative repertoire sequence analyses of pre-selection and post-selection TCR from multiple MHC-sufficient and MHC-deficient mouse strains, and find that MHC-restricted and MHC-independent TCRs are primarily distinguished by features in their non-germline CDR3 regions, with many pre-selection CDR3 sequences not compatible with MHC-binding. Thymic selection of MHC-independent TCR is largely unconstrained, but the selection of MHC-specific TCR is restricted by both CDR3 length and specific amino acid usage. MHC-restriction disfavors TCR with CDR3 longer than 13 amino acids, limits positively charged and hydrophobic amino acids in CDR3ß, and clonally deletes TCRs with cysteines in their CDR3 peptide-binding regions. Together, these MHC-imposed structural constraints form the basis to shape VDJ recombination sequences into MHC-restricted repertoires.


Subject(s)
Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Thymus Gland/immunology , Amino Acid Sequence , Animals , Complementarity Determining Regions/genetics , Lymphocyte Activation , Major Histocompatibility Complex/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell/genetics , Sequence Analysis, Protein , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , V(D)J Recombination
SELECTION OF CITATIONS
SEARCH DETAIL
...