Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
2.
Appl Environ Microbiol ; 90(2): e0183523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38214516

ABSTRACT

Even though differences in methodology (e.g., sample volume and detection method) have been shown to affect observed microbial water quality, multiple sampling and laboratory protocols continue to be used for water quality monitoring. Research is needed to determine how these differences impact the comparability of findings to generate best management practices and the ability to perform meta-analyses. This study addresses this knowledge gap by compiling and analyzing a data set representing 2,429,990 unique data points on at least one microbial water quality target (e.g., Salmonella presence and Escherichia coli concentration). Variance partitioning analysis was used to quantify the variance in likelihood of detecting each pathogenic target that was uniquely and jointly attributable to non-methodological versus methodological factors. The strength of the association between microbial water quality and select methodological and non-methodological factors was quantified using conditional forest and regression analysis. Fecal indicator bacteria concentrations were more strongly associated with non-methodological factors than methodological factors based on conditional forest analysis. Variance partitioning analysis could not disentangle non-methodological and methodological signals for pathogenic Escherichia coli, Salmonella, and Listeria. This suggests our current perceptions of foodborne pathogen ecology in water systems are confounded by methodological differences between studies. For example, 31% of total variance in likelihood of Salmonella detection was explained by methodological and/or non-methodological factors, 18% was jointly attributable to both methodological and non-methodological factors. Only 13% of total variance was uniquely attributable to non-methodological factors for Salmonella, highlighting the need for standardization of methods for microbiological water quality testing for comparison across studies.IMPORTANCEThe microbial ecology of water is already complex, without the added complications of methodological differences between studies. This study highlights the difficulty in comparing water quality data from projects that used different sampling or laboratory methods. These findings have direct implications for end users as there is no clear way to generalize findings in order to characterize broad-scale ecological phenomenon and develop science-based guidance. To best support development of risk assessments and guidance for monitoring and managing waters, data collection and methods need to be standardized across studies. A minimum set of data attributes that all studies should collect and report in a standardized way is needed. Given the diversity of methods used within applied and environmental microbiology, similar studies are needed for other microbiology subfields to ensure that guidance and policy are based on a robust interpretation of the literature.


Subject(s)
Escherichia coli , Listeria , Environmental Microbiology , Salmonella , Food , Food Microbiology , Food Safety
3.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961513

ABSTRACT

The immunosuppressive milieu in pancreatic cancer (PC) is a significant hurdle to treatments, resulting in survival statistics that have barely changed in 5 decades. Here we present a combination treatment consisting of stereotactic body radiation therapy (SBRT) and IL-12 mRNA lipid nanoparticles delivered directly to pancreatic murine tumors. This treatment was effective against primary and metastatic models, achieving cures in both settings. IL-12 protein concentrations were transient and localized primarily to the tumor. Depleting CD4 and CD8 T cells abrogated treatment efficacy, confirming they were essential to treatment response. Single cell RNA sequencing from SBRT/IL-12 mRNA treated tumors demonstrated not only a complete loss of T cell exhaustion, but also an abundance of highly proliferative and effector T cell subtypes. SBRT elicited T cell receptor clonal expansion, whereas IL-12 licensed these cells with effector function. This is the first report demonstrating the utility of SBRT and IL-12 mRNA in PC. Statement of significance: This study demonstrates the use of a novel combination treatment consisting of radiation and immunotherapy in murine pancreatic tumors. This treatment could effectively treat local and metastatic disease, suggesting it may have the potential to treat a cancer that has not seen a meaningful increase in survival in 5 decades.

4.
Neurotoxicology ; 99: 177-183, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37858899

ABSTRACT

BACKGROUND: Humans differ in the metabolism of the neurotoxicant methyl mercury (MeHg). This variation may be partially due to variation in genes encoding the transcription factor Nuclear factor E2-related factor 2 (NRF2) and its negative regulator Kelch-like ECH-Associated Protein 1 (KEAP1), which regulate glutathione and related transporter and antioxidant proteins that play a role in the metabolism and neurotoxicity of MeHg. AIM: To elucidate a potential risk from genetic variation in NFE2L2 (encoding NRF2) and KEAP1 toward prenatal mercury exposure and child neurodevelopmental outcomes at 20 months and 7 years of age in a population with variable prenatal exposure to MeHg from maternal fish consumption. MATERIAL AND METHODS: Nutrition Cohort 2 is a mother-child cohort in the Republic of Seychelles. Children were genotyped for NFE2L2 (rs2364723, rs13001694) and KEAP1 (rs8113472, rs9676881) polymorphisms (N = 1285 after removing siblings). Total mercury (Hg) was measured in cord blood as a biomarker for prenatal MeHg exposure. Child neurodevelopmental outcomes included the Bayley Scales of Infant Development II administered at 20 months of age, and outcomes across multiple neurodevelopmental domains from 14 tests administered in children and 3 instruments completed by parents when children were 7 years of age. RESULTS: The mean cord blood MeHg concentration was 34 (95% CI 11, 75) µg/L. None of the four polymorphisms had a significant association (p < 0.05) with either cord MeHg or neurodevelopmental test results at 20 months. There were no significant associations between either NFE2L2 polymorphism and any developmental test scores. At 7 years, children carrying KEAP1 rs8113472 CA showed significantly worse performance on psychomotor function than children with the CC variant (finger tapping, dominant hand: ß - 1.19, SE 0.34; finger tapping, non-dominant hand: ß - 0.92, SE 0.31) and worse social communication (SCQ Total: ß 0.65, SE 0.27). Children carrying rs8113472 AA, versus children with CC, showed significantly better performance on social communication (SRS Total: ß - 8.88, SE 3.60). Children carrying KEAP1 rs9676881 AG, versus children with GG, showed significantly worse performance on psychomotor function (trailmaking A time: ß 8.66, SE 3.37) and cognition (KBIT Matrices: ß - 0.96, SE 0.36). CONCLUSION: No associations between NFE2L2 and KEAP1 polymorphisms and MeHg concentration were identified. However, at 7 years, KEAP1 polymorphisms were associated with differences in neurodevelopmental outcomes in children from a population with high fish intake.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , Mercury , Methylmercury Compounds , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Infant , Pregnancy , Child Development , Kelch-Like ECH-Associated Protein 1/genetics , Mercury/adverse effects , Mercury/toxicity , Methylmercury Compounds/adverse effects , Methylmercury Compounds/toxicity , NF-E2-Related Factor 2/genetics , Prenatal Exposure Delayed Effects/genetics , Seychelles
5.
Neurotoxicology ; 99: 115-119, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832849

ABSTRACT

BACKGROUND: Consumption of fish yields many nutritional benefits, but also results in exposure to methylmercury (MeHg). The developing brain is known to be particularly susceptible to MeHg toxicity in high doses. However, the potential impact of low-level environmental exposure from fish consumption on children's neurodevelopment remains unclear. METHODS: We investigated postnatal MeHg exposure at 7 years and its association with a battery of 17 neurodevelopmental outcomes in a subset of children (n = 376) from 1535 enrolled mother-child pairs in Nutrition Cohort 2 of the Seychelles Child Development Study (SCDS NC2). Each outcome was modeled in relation to postnatal MeHg exposure using linear regression, adjusting for prenatal MeHg exposure, levels of maternal polyunsaturated fatty acids (PUFA), and several other covariates known to be associated with neurodevelopmental outcomes. RESULTS: Median postnatal MeHg exposure at 7 years was 2.5 ppm, while the median prenatal MeHg exposure was 3.5 ppm. We found no statistically significant associations between postnatal MeHg exposure and any of the 17 neurodevelopmental outcomes after adjusting for prenatal MeHg exposure and other covariates. CONCLUSIONS: These findings are consistent with previous cross-sectional analyses of the SCDS Main Cohort. Continued follow-up of the entire NC2 cohort at later ages with repeated exposure measures is needed to further confirm these findings.


Subject(s)
Methylmercury Compounds , Prenatal Exposure Delayed Effects , Pregnancy , Female , Animals , Humans , Methylmercury Compounds/toxicity , Methylmercury Compounds/analysis , Child Development , Seychelles/epidemiology , Cross-Sectional Studies , Cohort Studies , Prenatal Exposure Delayed Effects/chemically induced , Food Contamination/analysis , Maternal Exposure/adverse effects
6.
J Appl Microbiol ; 134(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37709569

ABSTRACT

AIMS: While fecal indicator bacteria (FIB) testing is used to monitor surface water for potential health hazards, observed variation in FIB levels may depend on the scale of analysis (SOA). Two decades of citizen science data, coupled with random effects models, were used to quantify the variance in FIB levels attributable to spatial versus temporal factors. METHODS AND RESULTS: Separately, Bayesian models were used to quantify the ratio of spatial to non-spatial variance in FIB levels and identify associations between environmental factors and FIB levels. Separate analyses were performed for three SOA: waterway, watershed, and statewide. As SOA increased (from waterway to watershed to statewide models), variance attributable to spatial sources generally increased and variance attributable to temporal sources generally decreased. While relationships between FIB levels and environmental factors, such as flow conditions (base versus stormflow), were constant across SOA, the effect of land cover was highly dependent on SOA and consistently smaller than the effect of stormwater infrastructure (e.g. outfalls). CONCLUSIONS: This study demonstrates the importance of SOA when developing water quality monitoring programs or designing future studies to inform water management.


Subject(s)
Citizen Science , Water Quality , Environmental Monitoring/methods , Bayes Theorem , Escherichia coli , Water Microbiology , Feces/microbiology , Bacteria
7.
Microbiol Spectr ; : e0228523, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712639

ABSTRACT

HIV incidence is a key measure for tracking disease spread and identifying populations and geographic regions where new infections are most concentrated. The HIV sequence population provides a robust signal for the stage of infection. Large-scale and high-precision HIV sequencing is crucial for effective genomic incidence surveillance. We produced 1,034 full-length envelope gene sequences from a seroconversion cohort by conducting HIV microdrop sequencing and measuring the genomic incidence assay's genome similarity index (GSI) dynamics. The measured dynamics of 9 of 12 individuals aligned with the GSI distribution estimated independently using 417 publicly available incident samples. We enhanced the capacity to identify individuals with recent infections, achieving predicted detection accuracies of 92% (89%-94%) for cases within 6 months and 81% (74%-87%) for cases within 9 months. These accuracy levels agreed with the observed detection accuracy intervals of an independent validation data set. Additionally, we produced 131 full-length envelope gene sequences from eight individuals with chronic HIV infection. This analysis confirmed a false recency rate (FRR) of 0%, which was consistent with 162 publicly available chronic samples. The mean duration of recent infection (MDRI) was 238 (209-267) days, indicating an 83% improvement in performance compared to current recent infection testing algorithms. The shifted Poisson mixture model was then used to estimate the time since infection, and the model estimates showed an 88% consistency with the days post infection derived from HIV RNA test dates and/or seroconversion dates. HIV microdrop sequencing provides unique prospects for large-scale incidence surveillance using high-throughput sequencing. IMPORTANCE Accurate identification of recently infected individuals is vital for prioritizing specific populations for interventions, reducing onward transmission risks, and optimizing public health services. However, current HIV-specific antibody-based methods have not been satisfactory in accurately identifying incident cases, hindering the use of HIV recency testing for prevention efforts and partner protection. Genomic incidence assays offer a promising alternative for identifying recent infections. In our study, we used microdroplet technologies to produce a large number of complete HIV envelope gene sequences, enabling the accurate detection of early infection signs. We assessed the dynamics of the incidence assay's metrics and compared them with statistical models. Our approach demonstrated high accuracy in identifying individuals with recent infections, achieving predicted detection rates exceeding 90% within 6 months and over 80% within 9 months of infection. This high-resolution method holds significant potential for enhancing the effectiveness of HIV incidence screening for case-based surveillance in public health initiatives.

8.
Cell Death Dis ; 14(7): 470, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495596

ABSTRACT

Rectal cancer ranks as the second leading cause of cancer-related deaths. Neoadjuvant therapy for rectal cancer patients often results in individuals that respond well to therapy and those that respond poorly, requiring life-altering excision surgery. It is inadequately understood what dictates this responder/nonresponder divide. Our major aim is to identify what factors in the tumor microenvironment drive a fraction of rectal cancer patients to respond to radiotherapy. We also sought to distinguish potential biomarkers that would indicate a positive response to therapy and design combinatorial therapeutics to enhance radiotherapy efficacy. To address this, we developed an orthotopic murine model of rectal cancer treated with short course radiotherapy that recapitulates the bimodal response observed in the clinic. We utilized a robust combination of transcriptomics and protein analysis to identify differences between responding and nonresponding tumors. Our mouse model recapitulates human disease in which a fraction of tumors respond to radiotherapy (responders) while the majority are nonresponsive. We determined that responding tumors had increased damage-induced cell death, and a unique immune-activation signature associated with tumor-associated macrophages, cancer-associated fibroblasts, and CD8+ T cells. This signature was dependent on radiation-induced increases of Type I Interferons (IFNs). We investigated a therapeutic approach targeting the cGAS/STING pathway and demonstrated improved response rate following radiotherapy. These results suggest that modulating the Type I IFN pathway has the potential to improve radiation therapy efficacy in RC.


Subject(s)
Interferon Type I , Rectal Neoplasms , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/pathology , Rectal Neoplasms/genetics , Rectal Neoplasms/radiotherapy , Treatment Outcome , Neoadjuvant Therapy/methods , Tumor Microenvironment
9.
Br J Nutr ; 130(8): 1366-1372, 2023 10 28.
Article in English | MEDLINE | ID: mdl-36759019

ABSTRACT

Maternal fish consumption exposes the fetus to beneficial nutrients and potentially adverse neurotoxicants. The current study investigated associations between maternal fish consumption and child neurodevelopmental outcomes. Maternal fish consumption was assessed in the Seychelles Child Development Study Nutrition Cohort 1 (n 229) using 4-day food diaries. Neurodevelopment was evaluated at 9 and 30 months, and 5 and 9 years with test batteries assessing twenty-six endpoints and covering multiple neurodevelopmental domains. Analyses used multiple linear regression with adjustment for covariates known to influence child neurodevelopment. This cohort consumed an average of 8 fish meals/week and the total fish intake during pregnancy was 106·8 (sd 61·9) g/d. Among the twenty-six endpoints evaluated in the primary analysis there was one beneficial association. Children whose mothers consumed larger quantities of fish performed marginally better on the Kaufman Brief Intelligence Test (a test of nonverbal intelligence) at age 5 years (ß 0·003, 95 % CI (0, 0·005)). A secondary analysis dividing fish consumption into tertiles found no significant associations when comparing the highest and lowest consumption groups. In this cohort, where fish consumption is substantially higher than current global recommendations, maternal fish consumption during pregnancy was not beneficially or adversely associated with children's neurodevelopmental outcomes.


Subject(s)
Methylmercury Compounds , Prenatal Exposure Delayed Effects , Humans , Female , Animals , Child Development , Seychelles , Nutritional Status
10.
Int J Radiat Oncol Biol Phys ; 115(3): 733-745, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36202180

ABSTRACT

PURPOSE: Many solid tumors present with perineural invasion (PNI), and innervation correlates with worsened prognosis. The effects that commonly administered therapies such as radiation therapy (RT) have on PNI status remain unknown. We investigated the contribution of RT on the nervous system and elucidated the implications that increased nerve signaling can have on tumor burden using our previously developed orthotopic murine model of rectal cancer (RC) and our targeted and clinically relevant short-course RT (SCRT) regimen. METHODS: Medical charts for patients with RC treated at the Wilmot Cancer Institute were obtained and PNI status was analyzed. Human data were accompanied by an orthotopic murine model of RC. Briefly, luciferase-expressing murine colon-38 (MC38-luc) tumor cells were injected orthotopically into the rectal wall of C57BL6 mice. Targeted SCRT (5 gray (Gy) per fraction for 5 consecutive fractions) was administered to the tumor. Intratumoral innervation was determined by immunohistochemistry (IHC), local norepinephrine (NE) concentration was quantified by enzyme-linked immunosorbent assay (ELISA), and ß2-adrenergic receptor (B2AR) expression was assessed by flow cytometry. Chronic NE signaling was mirrored by daily isoproterenol treatment, and the effect on tumor burden was determined by overall survival, presence of metastatic lesions, and tumor size. Isoproterenol signaling was inhibited by administration of propranolol. RESULTS: Human RC patients with PNI have decreased overall survival compared with patients without PNI. In our mouse model, SCRT induced the expression of genes involved in neurogenesis, increased local NE secretion, and upregulated B2AR expression. Treating mice with isoproterenol resulted in decreased overall survival, increased rate of metastasis, and reduced SCRT efficacy. Interestingly, the isoproterenol-induced decrease in SCRT efficacy could be abrogated by blocking the BAR through the use of propranolol, suggesting a direct role of BAR stimulation on impairing SCRT responses. CONCLUSIONS: Our results indicate that while SCRT is a valuable treatment, it is accompanied by adverse effects on the nervous system that may impede the efficacy of therapy and promote tumor burden. Therefore, we could speculate that therapies aimed at targeting this signaling cascade or impairing nerve growth in combination with SCRT may prove beneficial in future cancer treatment.


Subject(s)
Propranolol , Rectal Neoplasms , Humans , Animals , Mice , Disease Models, Animal , Isoproterenol , Propranolol/pharmacology , Mice, Inbred C57BL , Rectal Neoplasms/pathology
11.
Appl Environ Microbiol ; 88(23): e0160022, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36409131

ABSTRACT

While growers have reported pressures to minimize wildlife intrusion into produce fields through noncrop vegetation (NCV) removal, NCV provides key ecosystem services. To model food safety and environmental tradeoffs associated with NCV removal, published and publicly available food safety and water quality data from the Northeastern United States were obtained. Because data on NCV removal are not widely available, forest-wetland cover was used as a proxy, consistent with previous studies. Structural equation models (SEMs) were used to quantify the effect of forest-wetland cover on (i) food safety outcomes (e.g., detecting pathogens in soil) and (ii) water quality (e.g., nutrient levels). Based on the SEMs, NCV was not associated with or had a protective effect on food safety outcomes (more NCV was associated with a reduced likelihood of pathogen detection). The probabilities of detecting Listeria spp. in soil (effect estimate [EE] = -0.17; P = 0.005) and enterohemorrhagic Escherichia coli in stream samples (EE = -0.27; P < 0.001) were negatively associated with the amount of NCV surrounding the sampling site. Larger amounts of NCV were also associated with lower nutrient, salinity, and sediment levels, and higher dissolved oxygen levels. Total phosphorous levels were negatively associated with the amount of NCV in the upstream watershed (EE = -0.27; P < 0.001). Similar negative associations (P < 0.05) were observed for other physicochemical parameters, such as nitrate (EE = -0.38). Our findings suggest that NCV should not be considered an inherent produce safety risk or result in farm audit demerits. This study also provides a framework for evaluating environmental tradeoffs associated with using specific preharvest food safety strategies. IMPORTANCE Currently, on-farm food safety decisions are typically made independently of conservation considerations, often with detrimental impacts on agroecosystems. Comanaging agricultural environments to simultaneously meet conservation and food safety aims is complicated because farms are closely linked to surrounding environments, and management decisions can have unexpected environmental, economic, and food safety consequences. Thus, there is a need for research on the conservation and food safety tradeoffs associated with implementing specific preharvest food safety practices. Understanding these tradeoffs is critical for developing adaptive comanagement strategies and ensuring the short- and long-term safety, sustainability, and profitability of agricultural systems. This study quantifies tradeoffs and synergies between food safety and environmental aims, and outlines a framework for modeling tradeoffs and synergies between management aims that can be used to support future comanagement research.


Subject(s)
Ecosystem , Water Quality , Farms , Food Safety , Agriculture , Soil
12.
Neurotoxicology ; 91: 228-233, 2022 07.
Article in English | MEDLINE | ID: mdl-35654246

ABSTRACT

BACKGROUND: There is emerging evidence that exposure to prenatal methylmercury (MeHg) from maternal fish consumption during pregnancy can differ between individuals due to genetic variation. In previous studies, we have reported that maternal polymorphisms in ABC-transporter genes were associated with maternal hair MeHg concentrations, and with children's early neurodevelopmental tests. In this study, we add to these findings by evaluating the contribution of genetic variation in children's ABC-transporter genes to prenatal MeHg exposure and early child neurodevelopmental tests. METHODS: We genotyped six polymorphisms (rs2032582, rs10276499 and rs1202169 in ABCB1; rs11075290 and rs215088 in ABCC1; rs717620 in ABCC2) in DNA from cord blood and maternal blood of the Seychelles Child Development Study Nutrition Cohort 2. We determined prenatal MeHg exposure by measuring total mercury (Hg) in cord blood by atomic fluorescence spectrometry. We assessed neurodevelopment in children at approximately 20 months using the Bayley Scales of Infant Development (BSID-II). We used linear regression models to analyze covariate-adjusted associations of child genotype with cord MeHg and BSID-II outcomes (Mental Developmental and Psychomotor Developmental Indexes). We also evaluated interactions between genotypes, cord MeHg, and neurodevelopmental outcomes. All models were run with and without adjustment for maternal genotype. RESULTS: Of the six evaluated polymorphisms, only ABCC1 rs11075290 was associated with cord blood MeHg; children homozygous for the T-allele had on average 29.99 µg/L MeHg in cord blood while those homozygous for the C-allele had on average 38.06 µg/L MeHg in cord blood (p < 0.001). No polymorphisms in the children were associated with either subscale of the BSID. However, the association between cord MeHg and the Mental Developmental Index (MDI) of the BSID differed significantly across the three genotypes of ABCB1 rs10276499 (2df F-test, p = 0.045). With increasing cord MeHg, the MDI decreased (slope=-0.091, p = 0.014) among children homozygous for the rare C-allele. CONCLUSIONS: These findings support the possibility that child ABC genetics might influence prenatal MeHg exposure.


Subject(s)
ATP-Binding Cassette Transporters , Mercury , Methylmercury Compounds , Prenatal Exposure Delayed Effects , ATP-Binding Cassette Transporters/genetics , Child Development , Cohort Studies , Female , Fish Products , Humans , Infant , Infant, Newborn , Maternal Exposure , Methylmercury Compounds/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Seafood/toxicity , Seychelles
13.
Pattern Anal Appl ; 25(1): 89-124, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35370452

ABSTRACT

The Random Subspace Method (RSM) is an ensemble procedure in which each constituent learner is constructed using a randomly chosen subset of the data features. Regression trees are ideal candidate learners in RSM ensembles. By constructing trees upon different feature subsets, RSM reduces correlation between trees resulting in a stronger ensemble. Furthermore, it lessens computational burden by only considering a subset of the features when building each tree. Despite its apparent advantages, RSM has a notable drawback. In some instances a randomly chosen subspace may lack informative features. This is especially true in situations in which the number of truly informative variables is small relative to the total number of variables. Trees that are constructed using feature subsets lacking informative features can be damaging to the ensemble. Here we present Grafted Random Subspaces (GRS) and Vanishing Random Subspaces (VRS), two novel ensemble procedures designed to remedy the aforementioned drawback by reusing information across trees. Both techniques borrow from RSM by growing individual trees on randomly selected feature subsets. For each tree in a GRS ensemble, the most important variable is identified and guaranteed inclusion into the next q feature subsets. This allows GRS to recycle a promising feature from one tree across several successive trees, effectively grafting the variable into the next q active subsets. In the VRS procedure the least important feature is guaranteed exclusion from the next q feature subsets. This creates a more enriched pool of candidate variables from which the successive feature subsets are drawn.

14.
Adv Radiat Oncol ; 7(2): 100867, 2022.
Article in English | MEDLINE | ID: mdl-35036637

ABSTRACT

PURPOSE: Orthotopic tumors more closely recapitulate human cancers than do ectopic models; however, precision targeting of such internal tumors for radiation therapy (RT) without inducing systemic toxicity remains a barrier. We developed an innovative murine orthotopic rectal tumor model where the insertion of clinical grade titanium fiducial clips on opposing sides of the rectal tumor allowed for targeted administration of short-course radiation therapy (SCRT). With this novel approach, clinically relevant RT regimens can be administered to orthotopic tumors to explore the biology and efficacy of radiation alone or as a combination therapy in a murine model that closely recapitulates human disease. METHODS AND MATERIALS: Murine Colon 38-luciferase tumor cells were injected into the rectal wall of syngeneic mice, and fiducial clips were applied to demarcate the tumor. An SCRT regimen consisting of 5 consecutive daily doses of 5 Gy delivered by an image-guided conformal small animal irradiator was administered 9 days after implantation. Tumor burden and survival were monitored along with histological and flow cytometric analyses on irradiated versus untreated tumors at various time points. RESULTS: SCRT administered to orthotopic rectal tumors resulted in a reduction in tumor burden and enhanced overall survival with no apparent signs of systemic toxicity. This treatment paradigm resulted in significant reductions in tumor cellularity and increases in fibrosis and hyaluronic acid production, recapitulating the SCRT-induced effects observed in human cancers. CONCLUSIONS: We have established a means to target murine orthotopic rectal tumors using fiducial markers with a fractionated and clinically relevant SCRT schedule that results in an RT response similar to what is observed in human rectal cancer. We also validated our model through examining various parameters associated with human cancer that are influenced by irradiation. This model can be used to further explore RT doses and scheduling, and to test combinatorial therapies.

15.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34830013

ABSTRACT

Mercury ranks third on the U.S. Agency of Toxic Substances and Disease Registry priority list of hazardous substances, behind only arsenic and lead. We have undertaken uncovering the mechanisms underlying the developmental toxicity of methylmercury (MeHg), inorganic mercury (HgCl2), lead acetate (Pb), and sodium arsenite (As). To probe these differences, we used the Drosophila model, taking advantage of three developmental transitions-pupariation, metamorphosis, and eclosion-to differentiate potentially unique windows of toxicity. We elaborated dose response profiles for each individual metal administered in food and accounted for internal body burden, also extending analyses to evaluate combinatorial metal mixture effects. We observed all four metals producing larval lethality and delayed pupariation, with MeHg being most potent. Compared to other metals, MeHg's potency is caused by a higher body burden with respect to dose. MeHg uniquely caused dose-dependent failure in eclosion that was unexpectedly rescued by titrating in HgCl2. Our results highlight a unique developmental window and toxicokinetic properties where MeHg acts with specificity relative to HgCl2, Pb, and As. These findings will serve to refine future studies aimed at revealing tissue morphogenesis events and cell signaling pathways, potentially conserved in higher organisms, that selectively mediate MeHg toxicity and its antagonism by HgCl2.


Subject(s)
Drosophila melanogaster/drug effects , Mercury/toxicity , Metals/toxicity , Methylmercury Compounds/toxicity , Animals , Arsenites/toxicity , Drosophila melanogaster/growth & development , Humans , Larva/drug effects , Organometallic Compounds/toxicity , Protein Isoforms/toxicity , Sodium Compounds/toxicity , Toxicological Phenomena
16.
Microb Pathog ; 160: 105209, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34563611

ABSTRACT

People living with HIV have a high incidence of cardiovascular and neurological diseases as comorbid disorders that are commonly linked to inflammation. While microbial translocation can augment inflammation during HIV infection, functional microbiome shifts that may increase pro-inflammatory responses have not been fully characterized. In addition, defining HIV-induced microbiome changes has been complicated by high variability among individuals. Here we conducted functional annotation of previously-published 16S ribosomal RNA gene sequences of 305 HIV positive and 249 negative individuals, with adjustment for geographic region, sex, sexual behavior, and age. Metagenome profiles were inferred from these individuals' 16S data. HIV infection was associated with impaired microbial vitamin B synthesis; around half of the gene families in thiamine and folate biosynthesis pathways were significantly less abundant in the HIV positive group than the negative control. These results are consistent with the high prevalence of thiamine and folate deficiencies in HIV infections. These HIV-induced microbiota shifts have the potential to influence cardiovascular and neurocognitive diseases, given the documented associations between B-vitamin deficiencies, inflammation, and these diseases. We also observed that most essential amino acid biosynthesis pathways were downregulated in the microbiome of HIV-infected individuals. Microbial vitamin B and amino acid synthesis pathways were not significantly recovered by antiretroviral treatment when we compared 262 ART positive and 184 ART negative individuals. Our meta-analysis provides a new outlook for understanding vitamin B and amino acid deficiencies in HIV patients, suggesting that interventions for reversing HIV-induced microbiome shifts may aid in lessening the burdens of HIV comorbidities.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Folic Acid , HIV Infections/complications , Humans , Metagenome , RNA, Ribosomal, 16S/genetics , Thiamine
17.
Front Artif Intell ; 4: 628441, 2021.
Article in English | MEDLINE | ID: mdl-34056577

ABSTRACT

Since E. coli is considered a fecal indicator in surface water, government water quality standards and industry guidance often rely on E. coli monitoring to identify when there is an increased risk of pathogen contamination of water used for produce production (e.g., for irrigation). However, studies have indicated that E. coli testing can present an economic burden to growers and that time lags between sampling and obtaining results may reduce the utility of these data. Models that predict E. coli levels in agricultural water may provide a mechanism for overcoming these obstacles. Thus, this proof-of-concept study uses previously published datasets to train, test, and compare E. coli predictive models using multiple algorithms and performance measures. Since the collection of different feature data carries specific costs for growers, predictive performance was compared for models built using different feature types [geospatial, water quality, stream traits, and/or weather features]. Model performance was assessed against baseline regression models. Model performance varied considerably with root-mean-squared errors and Kendall's Tau ranging between 0.37 and 1.03, and 0.07 and 0.55, respectively. Overall, models that included turbidity, rain, and temperature outperformed all other models regardless of the algorithm used. Turbidity and weather factors were also found to drive model accuracy even when other feature types were included in the model. These findings confirm previous conclusions that machine learning models may be useful for predicting when, where, and at what level E. coli (and associated hazards) are likely to be present in preharvest agricultural water sources. This study also identifies specific algorithm-predictor combinations that should be the foci of future efforts to develop deployable models (i.e., models that can be used to guide on-farm decision-making and risk mitigation). When deploying E. coli predictive models in the field, it is important to note that past research indicates an inconsistent relationship between E. coli levels and foodborne pathogen presence. Thus, models that predict E. coli levels in agricultural water may be useful for assessing fecal contamination status and ensuring compliance with regulations but should not be used to assess the risk that specific pathogens of concern (e.g., Salmonella, Listeria) are present.

18.
Am J Clin Nutr ; 113(2): 304-313, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33330939

ABSTRACT

BACKGROUND: Fish is a primary source of protein and n-3 PUFA but also contains methylmercury (MeHg), a naturally occurring neurotoxicant to which, at sufficient exposure levels, the developing fetal brain is particularly sensitive. OBJECTIVES: To examine the association between prenatal MeHg and maternal status of n-3 and n-6 PUFA with neurodevelopment, and to determine whether PUFA might modify prenatal MeHg associations with neurodevelopment. METHODS: We examined the Seychelles Child Development Study Nutrition Cohort 2 (NC2) at age 7 y. We used a sophisticated and extensive neurodevelopmental test battery that addressed 17 specific outcomes in multiple neurodevelopmental domains: cognition, executive and psychomotor function, language development, behavior, scholastic achievement, and social communication. Analyses were undertaken on 1237 mother-child pairs with complete covariate data (after exclusions) and a measure of at least 1 outcome. We examined the main and interactive associations of prenatal MeHg exposure (measured as maternal hair mercury) and prenatal PUFA status (measured in maternal serum at 28 weeks' gestation) on child neurodevelopmental outcomes using linear regression models. We applied the Bonferroni correction to account for multiple comparisons and considered P values <0.0029 to be statistically significant. RESULTS: Prenatal MeHg exposure and maternal DHA and arachidonic acid (20:4n-6) (AA) status were not significantly associated with any neurodevelopmental outcomes. Findings for 4 outcomes encompassing executive function, cognition, and linguistic skills suggested better performance with an increasing maternal n-6:n-3 PUFA ratio (P values ranging from 0.004 to 0.05), but none of these associations were significant after adjusting for multiple comparisons. No significant interaction between MeHg exposure and PUFA status was present. CONCLUSIONS: Our findings do not support an association between prenatal MeHg exposure or maternal DHA and AA status with neurodevelopmental outcomes at age 7 y. The roles of n-6 and n-3 PUFA in child neurodevelopment need further research.


Subject(s)
Child Development/drug effects , Fatty Acids, Unsaturated/metabolism , Methylmercury Compounds/toxicity , Neurodevelopmental Disorders/etiology , Prenatal Exposure Delayed Effects , Biomarkers/blood , Biomarkers/chemistry , Child , Female , Hair/chemistry , Humans , Methylmercury Compounds/chemistry , Pregnancy , Seychelles
19.
Environ Int ; 147: 106321, 2021 02.
Article in English | MEDLINE | ID: mdl-33340986

ABSTRACT

BACKGROUND: Methylmercury (MeHg) is present in fish and is a neurotoxicant at sufficiently high levels. One potential mechanism of MeHg toxicity early in life is epigenetic dysregulation that may affect long-term neurodevelopment. Altered DNA methylation of nervous system-related genes has been associated with adult mental health outcomes. OBJECTIVE: To assess associations between prenatal MeHg exposure and DNA methylation (at the cytosine of CG dinucleotides, CpGs) in three nervous system-related genes, encoding brain-derived neurotropic factor (BDNF), glutamate receptor subunit NR2B (GRIN2B), and the glucocorticoid receptor (NR3C1), in children who were exposed to MeHg in utero. METHODS: We tested 406 seven-year-old Seychellois children participating in the Seychelles Child Development Study (Nutrition Cohort 2), who were prenatally exposed to MeHg from maternal fish consumption. Total mercury in maternal hair (prenatal MeHg exposure measure) collected during pregnancy was measured using atomic absorption spectroscopy. Methylation in DNA from the children's saliva was measured by pyrosequencing. To assess associations between prenatal MeHg exposure and CpG methylation at seven years of age, we used multivariable linear regression models adjusted for covariates. RESULTS: We identified associations with prenatal MeHg exposure for DNA methylation of one GRIN2B CpG and two NR3C1 CpGs out of 12 total CpG sites. Higher prenatal MeHg was associated with higher methylation for each CpG site. For example, NR3C1 CpG3 had an expected increase of 0.03-fold for each additional 1 ppm of prenatal MeHg (B = 0.030, 95% CI 0.001, 0.059; p = 0.047). Several CpG sites associated with MeHg are located in transcription factor binding sites and the observed methylation changes are predicted to lead to lower gene expression. CONCLUSIONS: In a population of people who consume large amounts of fish, we showed that higher prenatal MeHg exposure was associated with differential DNA methylation at seven years of age at specific CpG sites that may influence neurodevelopment and mental health.


Subject(s)
Methylmercury Compounds , Prenatal Exposure Delayed Effects , Adult , Animals , Child , Child Development , DNA Methylation , Female , Humans , Methylmercury Compounds/toxicity , Pregnancy , Seychelles
20.
BMC Bioinformatics ; 21(1): 545, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243147

ABSTRACT

BACKGROUND: Quantitative real-time PCR (qPCR) is one of the most widely used methods to measure gene expression. An important aspect of qPCR data that has been largely ignored is the presence of non-detects: reactions failing to exceed the quantification threshold and therefore lacking a measurement of expression. While most current software replaces these non-detects with a value representing the limit of detection, this introduces substantial bias in the estimation of both absolute and differential expression. Single imputation procedures, while an improvement on previously used methods, underestimate residual variance, which can lead to anti-conservative inference. RESULTS: We propose to treat non-detects as non-random missing data, model the missing data mechanism, and use this model to impute missing values or obtain direct estimates of model parameters. To account for the uncertainty inherent in the imputation, we propose a multiple imputation procedure, which provides a set of plausible values for each non-detect. We assess the proposed methods via simulation studies and demonstrate the applicability of these methods to three experimental data sets. We compare our methods to mean imputation, single imputation, and a penalized EM algorithm incorporating non-random missingness (PEMM). The developed methods are implemented in the R/Bioconductor package nondetects. CONCLUSIONS: The statistical methods introduced here reduce discrepancies in gene expression values derived from qPCR experiments in the presence of non-detects, providing increased confidence in downstream analyses.


Subject(s)
Algorithms , Real-Time Polymerase Chain Reaction/methods , Computer Simulation , Humans , Models, Statistical , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...