Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(45): e2303527, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37420324

ABSTRACT

Carbon fiber precursor materials, such as polyacrylonitrile, pitch, and cellulose/rayon, require thermal stabilization to maintain structural integrity during conversion into carbon fiber. Thermal stabilization mitigates undesirable decomposition and liquification of the fibers during the carbonization process. Generally, the thermal stabilization of mesophase pitch consists of the attachment of oxygen-containing functional groups onto the polymeric structure. In this study, the oxidation of mesophase pitch precursor fibers at various weight percentage increases (1, 3.5, 5, 7.5 wt%) and temperatures (260, 280, 290 °C) using in situ differential scanning calorimetry and thermogravimetric analysis is investigated. The results are analyzed to determine the effect of temperature and weight percentage increase on the stabilization process of the fibers, and the fibers are subsequently carbonized and tested for tensile mechanical performance. The findings provide insight into the relationship between stabilization conditions, fiber microstructure, and mechanical properties of the resulting carbon fibers.

2.
ACS Appl Mater Interfaces ; 12(15): 17893-17900, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32208632

ABSTRACT

Three-dimensional carbon nanotube (CNT) forest microstructures are synthesized using sequenced, site-specific synthesis techniques. Thin-film layers of Al2O3 and Al2O3/Fe are patterned to support film-catalyst and floating-catalyst chemical vapor deposition (CVD) in specific areas. Al2O3 regions support only floating-catalyst CVD, whereas regions of layered Al2O3/Fe support both film- and floating-catalyst CNT growth. Sequenced application of the two CVD methods produced heterogeneous 3D CNT forest microstructures, including regions of only film-catalyst CNTs, only floating-catalyst CNTs, and vertically stacked layers of each. The compressive mechanical behavior of the heterogeneous CNT forests was evaluated, with the stacked layers exhibiting two distinct buckling plateaus. Finite element simulation of the stacked layers demonstrated that the relatively soft film-catalyst CNT forests were nearly fully buckled prior to large-scale deformation of the bottom floating-catalyst CNT forests.

SELECTION OF CITATIONS
SEARCH DETAIL
...