Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 102(1): 143-158.e7, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30770253

ABSTRACT

In the developing human neocortex, progenitor cells generate diverse cell types prenatally. Progenitor cells and newborn neurons respond to signaling cues, including neurotransmitters. While single-cell RNA sequencing has revealed cellular diversity, physiological heterogeneity has yet to be mapped onto these developing and diverse cell types. By combining measurements of intracellular Ca2+ elevations in response to neurotransmitter receptor agonists and RNA sequencing of the same single cells, we show that Ca2+ responses are cell-type-specific and change dynamically with lineage progression. Physiological response properties predict molecular cell identity and additionally reveal diversity not captured by single-cell transcriptomics. We find that the serotonin receptor HTR2A selectively activates radial glia cells in the developing human, but not mouse, neocortex, and inhibiting HTR2A receptors in human radial glia disrupts the radial glial scaffold. We show highly specific neurotransmitter signaling during neurogenesis in the developing human neocortex and highlight evolutionarily divergent mechanisms of physiological signaling.


Subject(s)
Calcium/metabolism , Ependymoglial Cells/metabolism , Neocortex/embryology , Neurogenesis/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Animals , Brain/embryology , Brain/metabolism , Cell Lineage , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Humans , Mice , Neocortex/cytology , Neocortex/metabolism , Neurogenesis/physiology , Sequence Analysis, RNA , Serotonin/metabolism , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...