Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 289(1981): 20221123, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35975441

ABSTRACT

Recent long-term studies in protected areas have revealed the loss of biodiversity, yet the ramifications for ecosystem health and resilience remain unknown. Here, we investigate how the loss of understory birds, in the lowest stratum of the forest, affects avian biomass and functional diversity in the Amazon rainforest. Across approximately 30 years in the Biological Dynamics of Forest Fragments Project, we used a historical baseline of avian communities to contrast the avian communities in today's primary forest with those in modern disturbed habitat. We found that in primary rainforest, the reduced abundance of insectivorous species led to reduced functional diversity, but no reduction of biomass, indicating that species with similar functional traits are less likely to coexist in modern primary forests. Because today's forests contain fewer functionally redundant species-those with similar traits-we argue that avian communities in modern primary Amazonian rainforests are less resilient, which may ultimately disrupt the ecosystem in dynamic and unforeseen ways.


Subject(s)
Biodiversity , Biomass , Rainforest , Animals , Birds , Ecosystem
5.
Sci Adv ; 7(46): eabk1743, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34767440

ABSTRACT

Warming from climate change is expected to reduce body size of endotherms, but studies from temperate systems have produced equivocal results. Over four decades, we collected morphometric data on a nonmigratory understory bird community within Amazonian primary rainforest that is experiencing increasingly extreme climate. All 77 species showed lower mean mass since the early 1980s­nearly half with 95% confidence. A third of species concomitantly increased wing length, driving a decrease in mass:wing ratio for 69% of species. Seasonal precipitation patterns were generally better than temperature at explaining morphological variation. Short-term climatic conditions affected all metrics, but time trends in wing and mass:wing remained robust even after controlling for annual seasonal conditions. We attribute these results to pressures to increase resource economy under warming. Both seasonal and long-term morphological shifts suggest response to climate change and highlight its pervasive consequences, even in the heart of the world's largest rainforest.

6.
Biol Conserv ; 261: 109213, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34548673

ABSTRACT

When COVID-19 arrived, usual human activity around the world paused or slowed, and nature responded to the opportunity. Even in major urban areas, people remarked on the clearer, crisper, star- brightened night skies. This issue's collection of interesting papers provides insights into ways the natural world responded, but it would seem worthwhile to take a step back and frame that phenomenon in its intellectual and epidemiological context.

7.
Ecol Lett ; 24(2): 186-195, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33103837

ABSTRACT

How are rainforest birds faring in the Anthropocene? We use bird captures spanning > 35 years from 55 sites within a vast area of intact Amazonian rainforest to reveal reduced abundance of terrestrial and near-ground insectivores in the absence of deforestation, edge effects or other direct anthropogenic landscape change. Because undisturbed forest includes far fewer terrestrial and near-ground insectivores than it did historically, today's fragments and second growth are more impoverished than shown by comparisons with modern 'control' sites. Any goals for bird community recovery in Amazonian second growth should recognise that a modern bird community will inevitably differ from a baseline from > 35 years ago. Abundance patterns driven by landscape change may be the most conspicuous manifestation of human activity, but biodiversity declines in undisturbed forest represent hidden losses, possibly driven by climate change, that may be pervasive in intact Amazonian forests and other systems considered to be undisturbed.


Subject(s)
Conservation of Natural Resources , Rainforest , Animals , Biodiversity , Birds , Forests , Humans , Trees
9.
Ecology ; 101(7): e03052, 2020 07.
Article in English | MEDLINE | ID: mdl-32239762

ABSTRACT

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Subject(s)
Forests , Wood , Africa , Brazil , Ecosystem , Tropical Climate
10.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Article in English | MEDLINE | ID: mdl-31712699

ABSTRACT

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Subject(s)
Ecosystem , Wood , Forests , Phylogeny , Tropical Climate
12.
Ecol Appl ; 29(6): e01952, 2019 09.
Article in English | MEDLINE | ID: mdl-31206818

ABSTRACT

Assessing the persistent impacts of fragmentation on aboveground structure of tropical forests is essential to understanding the consequences of land use change for carbon storage and other ecosystem functions. We investigated the influence of edge distance and fragment size on canopy structure, aboveground woody biomass (AGB), and AGB turnover in the Biological Dynamics of Forest Fragments Project (BDFFP) in central Amazon, Brazil, after 22+ yr of fragment isolation, by combining canopy variables collected with portable canopy profiling lidar and airborne laser scanning surveys with long-term forest inventories. Forest height decreased by 30% at edges of large fragments (>10 ha) and interiors of small fragments (<3 ha). In larger fragments, canopy height was reduced up to 40 m from edges. Leaf area density profiles differed near edges: the density of understory vegetation was higher and midstory vegetation lower, consistent with canopy reorganization via increased regeneration of pioneers following post-fragmentation mortality of large trees. However, canopy openness and leaf area index remained similar to control plots throughout fragments, while canopy spatial heterogeneity was generally lower at edges. AGB stocks and fluxes were positively related to canopy height and negatively related to spatial heterogeneity. Other forest structure variables typically used to assess the ecological impacts of fragmentation (basal area, density of individuals, and density of pioneer trees) were also related to lidar-derived canopy surface variables. Canopy reorganization through the replacement of edge-sensitive species by disturbance-tolerant ones may have mitigated the biomass loss effects due to fragmentation observed in the earlier years of BDFFP. Lidar technology offered novel insights and observational scales for analysis of the ecological impacts of fragmentation on forest structure and function, specifically aboveground biomass storage.


Subject(s)
Ecosystem , Rainforest , Brazil , Forests , Trees , Tropical Climate
13.
Science ; 364(6443): 881-886, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31147519

ABSTRACT

Protected areas are intended to safeguard biodiversity in perpetuity, yet evidence suggests that widespread legal changes undermine protected area durability and efficacy. We documented these legal changes-protected area downgrading, downsizing, and degazettement (PADDD) events-in the United States and Amazonian countries and compiled available data globally. Governments of the United States and Amazonian countries enacted 269 and 440 PADDD events, respectively. Between 1892 and 2018, 73 countries enacted 3749 PADDD events, removing 519,857 square kilometers from protection and tempering regulations in an additional 1,659,972 square kilometers; 78% of events were enacted since 2000. Most PADDD events (62%) are associated with industrial-scale resource extraction and development, suggesting that PADDD may compromise biodiversity conservation objectives. Strategic policy responses are needed to address PADDD and sustain effective protected areas.


Subject(s)
Biodiversity , Conservation of Natural Resources/legislation & jurisprudence , Industry , Policy , South America , Uncertainty , United States
14.
Sci Adv ; 5(5): eaax7492, 2019 May.
Article in English | MEDLINE | ID: mdl-31114810
15.
Conserv Biol ; 33(5): 1187-1192, 2019 10.
Article in English | MEDLINE | ID: mdl-30868645

ABSTRACT

Human activities are accelerating global biodiversity change and have resulted in severely threatened ecosystem services. A large proportion of terrestrial biodiversity is harbored by soil, but soil biodiversity has been omitted from many global biodiversity assessments and conservation actions, and understanding of global patterns of soil biodiversity remains limited. In particular, the extent to which hotspots and coldspots of aboveground and soil biodiversity overlap is not clear. We examined global patterns of these overlaps by mapping indices of aboveground (mammals, birds, amphibians, vascular plants) and soil (bacteria, fungi, macrofauna) biodiversity that we created using previously published data on species richness. Areas of mismatch between aboveground and soil biodiversity covered 27% of Earth's terrestrial surface. The temperate broadleaf and mixed forests biome had the highest proportion of grid cells with high aboveground biodiversity but low soil biodiversity, whereas the boreal and tundra biomes had intermediate soil biodiversity but low aboveground biodiversity. While more data on soil biodiversity are needed, both to cover geographic gaps and to include additional taxa, our results suggest that protecting aboveground biodiversity may not sufficiently reduce threats to soil biodiversity. Given the functional importance of soil biodiversity and the role of soils in human well-being, soil biodiversity should be considered further in policy agendas and conservation actions by adapting management practices to sustain soil biodiversity and considering soil biodiversity when designing protected areas.


Disparidades Mundiales entre la Biodiversidad Sobre y Bajo el Suelo Resumen Las actividades humanas están acelerando el cambio en la biodiversidad mundial y han tenido como resultado unos servicios ambientales severamente amenazados. Una gran proporción de la biodiversidad terrestre está albergada en el suelo, pero la biodiversidad de este ha sido omitida de varias evaluaciones mundiales de biodiversidad y de las acciones de conservación, además de que el entendimiento de los patrones mundiales de la biodiversidad del suelo permanece limitado; particularmente, la extensión del traslape entre los puntos fríos y calientes de biodiversidad sobre y bajo suelo no está clara. Examinamos los patrones mundiales de estos traslapes mapeando los índices de biodiversidad sobre el suelo (mamíferos, aves, anfibios y plantas vasculares) y bajo el suelo (bacterias, hongos y macrofauna) que creamos con datos previamente publicados de la riqueza de especies. Las áreas de disparidad entre la biodiversidad sobre y bajo el suelo cubrieron el 27% de la superficie terrestre del planeta. El bioma de los bosques templados de plantas frondosas y mixtas tuvo la proporción más alta de celdas de cuadrícula con una biodiversidad alta sobre el suelo, pero baja para en el subsuelo, mientras que los biomas boreales y de la tundra tuvieron una biodiversidad intermedia bajo el suelo, pero baja para el sobre suelo. Aunque se requieren más datos sobre la biodiversidad del suelo, tanto para cubrir los vacíos geográficos como para incluir a taxones adiciones, nuestros resultados sugieren que la protección a la biodiversidad sobre el suelo puede no reducir suficientemente las amenazas para la biodiversidad del suelo. Dada la importancia funcional de la biodiversidad del suelo y el papel de los suelos en el bienestar humano, se debería considerar a la biodiversidad del suelo mucho más en las agendas políticas y en las acciones de conservación, adaptando a las prácticas de manejo para que mantengan a la biodiversidad del suelo y la consideren cuando designen áreas protegidas.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , Forests , Humans , Soil
16.
Sci Adv ; 5(12): eaba2949, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32064324
17.
Sci Adv ; 4(8): eaau9981, 2018 08.
Article in English | MEDLINE | ID: mdl-30140747
19.
Sci Adv ; 4(2): eaat2340, 2018 02.
Article in English | MEDLINE | ID: mdl-29492460
20.
Biol Rev Camb Philos Soc ; 93(1): 223-247, 2018 02.
Article in English | MEDLINE | ID: mdl-28560765

ABSTRACT

We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales.


Subject(s)
Climate Change , Environmental Monitoring , Rainforest , Animals , Biodiversity , Conservation of Natural Resources , Models, Biological , Time Factors , Trees/physiology , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...