Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nature ; 589(7840): 65-69, 2021 01.
Article in English | MEDLINE | ID: mdl-33408374

ABSTRACT

Crystal defects affect the thermal and heat-transport properties of materials by scattering phonons and modifying phonon spectra1-8. To appreciate how imperfections in solids influence thermal conductivity and diffusivity, it is thus essential to understand phonon-defect interactions. Sophisticated theories are available to explore such interactions, but experimental validation is limited because most phonon-detecting spectroscopic methods do not reach the high spatial resolution needed to resolve local vibrational spectra near individual defects. Here we demonstrate that space- and angle-resolved vibrational spectroscopy in a transmission electron microscope makes it possible to map the vibrational spectra of individual crystal defects. We detect a red shift of several millielectronvolts in the energy of acoustic vibration modes near a single stacking fault in cubic silicon carbide, together with substantial changes in their intensity, and find that these changes are confined to within a few nanometres of the stacking fault. These observations illustrate that the capabilities of a state-of-the-art transmission electron microscope open the door to the direct mapping of phonon propagation around defects, which is expected to provide useful guidance for engineering the thermal properties of materials.

3.
Ultramicroscopy ; 217: 113067, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32801089

ABSTRACT

We characterize a hybrid pixel direct detector and demonstrate its suitability for electron energy loss spectroscopy (EELS). The detector has a large dynamic range, narrow point spread function, detective quantum efficiency ≥ 0.8 even without single electron arrival discrimination, and it is resilient to radiation damage. It is capable of detecting ~5 × 106 electrons/pixel/second, allowing it to accommodate up to 0.8 pA per pixel and hence >100 pA EELS zero-loss peak (ZLP) without saturation, if the ZLP is spread over >125 pixels (in the non-dispersion direction). At the same time, it can reliably detect isolated single electrons in the high loss region of the spectrum. The detector uses a selectable threshold to exclude low energy events, and this results in essentially zero dark current and readout noise. Its maximum frame readout rate at 16-bit digitization is 2250 full frames per second, allowing for fast spectrum imaging. We show applications including EELS of boron nitride in which an unsaturated zero loss peak is recorded at the same time as inner shell loss edges, elemental mapping of an STO/BTO/LMSO multilayer, and efficient parallel acquisition of angle-resolved EEL spectra (S(q, ω)) of boron nitride.

4.
Science ; 363(6426): 525-528, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30705191

ABSTRACT

The identification of isotopic labels by conventional macroscopic techniques lacks spatial resolution and requires relatively large quantities of material for measurements. We recorded the vibrational spectra of an α amino acid, l-alanine, with damage-free "aloof" electron energy-loss spectroscopy in a scanning transmission electron microscope to directly resolve carbon-site-specific isotopic labels in real space with nanoscale spatial resolution. An isotopic red shift of 4.8 ± 0.4 milli-electron volts in C-O asymmetric stretching modes was observed for 13C-labeled l-alanine at the carboxylate carbon site, which was confirmed by macroscopic infrared spectroscopy and theoretical calculations. The accurate measurement of this shift opens the door to nondestructive, site-specific, spatially resolved identification of isotopically labeled molecules with the electron microscope.

5.
Adv Mater ; : e1802702, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30062804

ABSTRACT

The ability to examine the vibrational spectra of liquids with nanometer spatial resolution will greatly expand the potential to study liquids and liquid interfaces. In fact, the fundamental properties of water, including complexities in its phase diagram, electrochemistry, and bonding due to nanoscale confinement are current research topics. For any liquid, direct investigation of ordered liquid structures, interfacial double layers, and adsorbed species at liquid-solid interfaces are of interest. Here, a novel way of characterizing the vibrational properties of liquid water with high spatial resolution using transmission electron microscopy is reported. By encapsulating water between two sheets of boron nitride, the ability to capture vibrational spectra to quantify the structure of the liquid, its interaction with the liquid-cell surfaces, and the ability to identify isotopes including H2 O and D2 O using electron energy-loss spectroscopy is demonstrated. The electron microscope used here, equipped with a high-energy-resolution monochromator, is able to record vibrational spectra of liquids and molecules and is sensitive to surface and bulk morphological properties both at the nano- and micrometer scales. These results represent an important milestone for liquid and isotope-labeled materials characterization with high spatial resolution, combining nanoscale imaging with vibrational spectroscopy.

6.
Sci Adv ; 4(6): eaar7495, 2018 06.
Article in English | MEDLINE | ID: mdl-29951584

ABSTRACT

Vibrational modes affect fundamental physical properties such as the conduction of sound and heat and can be sensitive to nano- and atomic-scale structure. Probing the momentum transfer dependence of vibrational modes provides a wealth of information about a materials system; however, experimental work has been limited to essentially bulk and averaged surface approaches or to small wave vectors. We demonstrate a combined experimental and theoretical methodology for nanoscale mapping of optical and acoustic phonons across the first Brillouin zone, in the electron microscope, probing a volume ~1010 to 1020 times smaller than that of comparable bulk and surface techniques. In combination with more conventional electron microscopy techniques, the presented methodology should allow for direct correlation of nanoscale vibrational mode dispersions with atomic-scale structure and chemistry.

7.
Phys Rev Lett ; 120(9): 095901, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29547334

ABSTRACT

Heat dissipation in integrated nanoscale devices is a major issue that requires the development of nanoscale temperature probes. Here, we report the implementation of a method that combines electron energy gain and loss spectroscopy to provide a direct measurement of the local temperature in the nanoenvironment. Loss and gain peaks corresponding to an optical-phonon mode in boron nitride were measured from room temperature to ∼1600 K. Both loss and gain peaks exhibit a shift towards lower energies as the sample is heated up. First-principles calculations of the temperature-induced phonon frequency shifts provide insights into the origin of this effect and confirm the experimental data. The experiments and theory presented here open the doors to the study of anharmonic effects in materials by directly probing phonons in the electron microscope.

9.
Nat Commun ; 7: 10945, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26961578

ABSTRACT

Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.


Subject(s)
Guanine/chemistry , Microscopy, Electron, Transmission/instrumentation , Spectroscopy, Electron Energy-Loss/methods , Spectroscopy, Fourier Transform Infrared/methods , Vibration , Animals , Carps , Microscopy, Electron/instrumentation , Spectrum Analysis/methods
10.
Nature ; 514(7521): 209-12, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25297434

ABSTRACT

Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.


Subject(s)
Microscopy, Electron, Scanning Transmission , Spectrum Analysis/methods , Vibration , Electrons , Hydrogen/analysis , Hydrogen/chemistry , Hydrogen Bonding , Phonons
11.
Phys Rev Lett ; 113(11): 115501, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25259987

ABSTRACT

We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.

12.
Microscopy (Oxf) ; 62(1): 3-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23335810

ABSTRACT

The origins and the recent accomplishments of aberration correction in scanning transmission electron microscopy (STEM) are reviewed. It is remembered that the successful correction of imaging aberrations of round lenses owes much to the successful correction of spectrum aberrations achieved in electron energy loss spectrometers 2-3 decades earlier. Two noteworthy examples of the types of STEM investigation that aberration correction has made possible are shown: imaging of single-atom impurities in graphene and analyzing atomic bonding of single atoms by electron energy loss spectroscopy (EELS). Looking towards the future, a new all-magnetic monochromator is described. The monochromator uses several of the principles pioneered in round lens aberration correction, and it employs stabilization schemes that make it immune to variations in the high voltage of the microscope and in the monochromator main prism current. Tests of the monochromator carried out at 60 keV have demonstrated energy resolution as good as 12 meV and monochromated probe size of ∼1.2 Å. These results were obtained in separate experiments, but they indicate that the instrument can perform imaging and EELS with an atom-sized probe <30 meV wide in energy, and that an improvement in energy resolution to 10 meV and beyond should be possible in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...