Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters










Publication year range
1.
Hum Reprod ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775335

ABSTRACT

STUDY QUESTION: Does the chemokine/chemokine receptor axis, involved in immune cell trafficking, contribute to the pathology of testicular inflammation and how does activin A modulate this network? SUMMARY ANSWER: Testicular chemokines and their receptors (especially those essential for trafficking of monocytes) are elevated in orchitis, and activin A modulates the expression of the chemokine/chemokine receptor network to promote monocyte/macrophage and T cell infiltration into the testes, causing extensive tissue damage. WHAT IS KNOWN ALREADY: The levels of CC motif chemokine receptor (CCR)2 and its ligand CC motif chemokine ligand (CCL)2 are increased in experimental autoimmune orchitis (EAO) compared with healthy testes, and mice deficient in CCR2 are protected from EAO-induced tissue damage. Activin A induces CCR2 expression in macrophages, promoting their migration. Moreover, there is a positive correlation between testicular activin A concentration and the severity of autoimmune orchitis. Inhibition of activin A activity by overexpression of follistatin (FST) reduces EAO-induced testicular damage. STUDY DESIGN, SIZE, DURATION: EAO was induced in 10-12-week-old male C57BL/6J (wild-type; WT) and B6.129P2-Ccr2tm1Mae/tm1Mae (Ccr2-/-) mice (n = 6). Adjuvant (n = 6) and untreated (n = 6) age-matched control mice were also included. Testes were collected at 50 days after the first immunization with testicular homogenate in complete Freund's adjuvant. In another experimental setup, WT mice were injected with a non-replicative recombinant adeno-associated viral vector carrying a FST315-expressing gene cassette (rAAV-FST315; n = 7-9) or an empty control vector (n = 5) 30 days prior to EAO induction. Appropriate adjuvant (n = 4-5) and untreated (n = 4-6) controls were also examined. Furthermore, human testicular biopsies exhibiting focal leukocytic infiltration and impaired spermatogenesis (n = 17) were investigated. Biopsies showing intact spermatogenesis were included as controls (n = 9). Bone-marrow-derived macrophages (BMDMs) generated from WT mice were treated with activin A (50 ng/ml) for 6 days. Activin-A-treated or untreated BMDMs were then co-cultured with purified mouse splenic T cells for two days to assess chemokine and cytokine production. PARTICIPANTS/MATERIALS, SETTING, METHODS: Quantitative real-time PCR (qRT-PCR) was used to analyze the expression of chemokines in total testicular RNA collected from mice. Immunofluorescence staining was used to detect activin A, F4/80, and CD3 expression in mouse testes. The expression of chemokine/chemokine-receptor-encoding genes was examined in human testicular biopsies by qRT-PCR. Correlations between chemokine expression levels and either the immune cell infiltration density or the mean spermatogenesis score were analyzed. Immunofluorescence staining was used to evaluate the expression of CD68 and CCR2 in human testicular biopsies. RNA isolated from murine BMDMs was used to characterize these cells in terms of their chemokine/chemokine receptor expression levels. Conditioned media from co-cultures of BMDMs and T cells were collected to determine chemokine levels and the production of pro-inflammatory cytokines tumor necrosis factor (TNF) and interferon (IFN)-γ by T cells. MAIN RESULTS AND THE ROLE OF CHANCE: Induction of EAO in the testes of WT mice increased the expression of chemokine receptors such as Ccr1 (P < 0.001), Ccr2 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.0001), CXC motif chemokine receptor (Cxcr)3 (P < 0.01), and CX3C motif chemokine receptor (Cx3cr)1 (P < 0.001), as well as that of most of their ligands. Ccr2 deficiency reversed some of the changes associated with EAO by reducing the expression of Ccr1 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.01), Cxcr3 (P < 0.001), and Cx3cr1 (P < 0.0001). Importantly, the biopsies showing impaired spermatogenesis and concomitant focal leukocytic infiltration exhibited higher expression of CCL2 (P < 0.01), CCR1 (P < 0.05), CCR2 (P < 0.001), and CCR5 (P < 0.001) than control biopsies with no signs of inflammation and intact spermatogenesis. The gene expression of CCR2 and its ligand CCL2 correlated positively with the immune cell infiltration density (P < 0.05) and negatively with the mean spermatogenesis score (P < 0.001). Moreover, CD68+ macrophages expressing CCR2 were present in human testes with leukocytic infiltration with evidence of tubular damage. Treatment of BMDMs, as surrogates for testicular macrophages, with activin A increased their expression of Ccr1, Ccr2, and Ccr5 while reducing their expression of Ccl2, Ccl3, Ccl4, Ccl6, Ccl7 Ccl8, and Ccl12. These findings were validated in vivo, by showing that inhibiting activin A activity by overexpressing FST in EAO mice decreased the expression of Ccr2 (P < 0.05) and Ccr5 (P < 0.001) in the testes. Interestingly, co-culturing activin-A-treated BMDMs and T cells reduced the levels of CCL2 (P < 0.05), CCL3/4 (P < 0.01), and CCL12 (P < 0.05) in the medium and attenuated the production of TNF (P < 0.05) by T cells. The majority of cells secreting activin A in EAO testes were identified as macrophages. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: BMDMs were used as surrogates for testicular macrophages. Hence, results obtained from the in vitro experiments might not be fully representative of the situation in the testes in vivo. Moreover, since total RNA was extracted from the testicular tissue to examine chemokine expression, the contributions of individual cell types as producers of specific chemokines may have been overlooked. WIDER IMPLICATIONS OF THE FINDINGS: Our data indicate that macrophages are implicated in the development and progression of testicular inflammation by expressing CCR2 and activin A, which ultimately remodel the chemokine/chemokine receptor network and recruit other immune cells to the site of inflammation. Consequently, inhibition of CCR2 or activin A could serve as a potential therapeutic strategy for reducing testicular inflammation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the International Research Training Group in 'Molecular pathogenesis on male reproductive disorders', a collaboration between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK1871/1-2) funded by the Deutsche Forschungsgemeinschaft and Monash University, a National Health and Medical Research Council of Australia Ideas Grant (1184867), and the Victorian Government's Operational Infrastructure Support Programme. The authors declare no competing financial interests.

2.
Br J Cancer ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649788

ABSTRACT

BACKGROUND: Immune cell infiltration is heterogeneous but common in testicular germ cell tumors (TGCT) and pre-invasive germ cell neoplasia in situ (GCNIS). Tumor-infiltrating T cells including regulatory T (Treg) and follicular helper T (Tfh) cells are found in other cancer entities, but their contributions to TGCT are unknown. METHODS: Human testis specimens from independent patient cohorts were analyzed using immunohistochemistry, flow cytometry and single-cell RNA sequencing (scRNA-seq) with special emphasis on delineating T cell subtypes. RESULTS: Profound changes in immune cell composition within TGCT, shifting from macrophages in normal testes to T cells plus B and dendritic cells in TGCT, were documented. In most samples (96%), the CD4+ T cell frequency exceeded that of CD8+ cells, with decreasing numbers from central to peripheral tumor areas, and to tumor-free, contralateral testes. T cells including Treg and Tfh were most abundant in seminoma compared to mixed tumors and embryonal carcinoma. CONCLUSION: Despite considerable heterogeneity between patients, T cell subtypes form a key part of the TGCT microenvironment. The novel finding of rare Treg and Tfh cells in human testis suggests their involvement in TGCT pathobiology, with implications for understanding tumor progression, to assess patients' prognosis, and as putative targets for personalized immunotherapy.

3.
Cells ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38534338

ABSTRACT

Stem cell maintenance and differentiation can be regulated via the differential activity of transcription factors within stem cells and their progeny. For these factors to be active, they need to be transported from their site of synthesis in the cytoplasm into the nucleus. A tissue-specific requirement for factors involved in nuclear importation is a potential mechanism to regulate stem cell differentiation. We have undertaken a characterization of male sterile importin alpha 1 (Dα1) null alleles in Drosophila and found that Dα1 is required for maintaining germline stem cells (GSCs) in the testis niche. The loss of GSCs can be rescued by ectopic expression of Dα1 within the germline but the animals are still infertile, indicating a second role for Dα1 in spermatogenesis. Expression of a Dα1 dominant negative transgene in GSCs confirmed a functional requirement for Dα1 in GSC maintenance but expression of the transgene in differentiating spermatogonia did not exhibit a phenotype indicating a specific role for Dα1 within GSCs. Our data indicate that Dα1 is utilized as a regulatory protein within GSCs to facilitate nuclear importation of proteins that maintain the stem cell pool.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Male , Drosophila/metabolism , Testis/metabolism , Drosophila Proteins/metabolism , alpha Karyopherins/metabolism , Signal Transduction/physiology , Stem Cells , Transcription Factors/metabolism , Spermatogonia/metabolism
4.
Front Endocrinol (Lausanne) ; 14: 1234712, 2023.
Article in English | MEDLINE | ID: mdl-37727456

ABSTRACT

Correct fetal testis development underpins adult male fertility, and TGFß superfamily ligands control key aspects of this process. Transcripts encoding one such ligand, activin A, are upregulated in testes after sex determination and remain high until after birth. Testis development requires activin signalling; mice lacking activin A (Inhba KO) display altered somatic and germ cell proliferation, disrupted cord elongation and altered steroid synthesis. In human pregnancies with pre-eclampsia, the foetus is inappropriately exposed to elevated activin A. To learn how this affects testis development, we examined mice lacking the potent activin inhibitor, inhibin, (Inha KO) at E13.5, E15.5 and PND0. At E13.5, testes appeared similar in WT and KO littermates, however E15.5 Inha KO testes displayed two germline phenotypes: (1) multinucleated germ cells within cords, and (2) germ cells outside of cords, both of which are documented following in utero exposure to endocrine disrupting phthalates in rodents. Quantitation of Sertoli and germ cells in Inha KO (modelling elevated activin A) and Inhba KO (low activin A) testes using immunofluorescence demonstrated activin A bioactivity determines the Sertoli/germ cell ratio. The 50% reduction in gonocytes in Inha KO testes at birth indicates unopposed activin A has a profound impact on embryonic germ cells. Whole testis RNAseq on Inha KO mice revealed most transcripts affected at E13.5 were present in Leydig cells and associated with steroid biosynthesis/metabolism. In agreement, androstenedione (A4), testosterone (T), and the A4:T ratio were reduced in Inha KO testes at E17.5, confirming unopposed activin A disrupts testicular steroid production. E15.5 testes cultured with either activin A and/or mono-2-ethylhexyl phthalate (MEHP) generated common histological and transcriptional outcomes affecting germline and Leydig cells, recapitulating the phenotype observed in Inha KO testes. Cultures with activin A and MEHP together provided evidence of common targets. Lastly, this study extends previous work focussed on the Inhba KO model to produce a signature of activin A bioactivity in the fetal testis. These outcomes show the potential for elevated activin A signalling to replicate some aspects of fetal phthalate exposure prior to the masculinization programming window, influencing fetal testis growth and increasing the risk of testicular dysgenesis.


Subject(s)
Activins , Testis , Adult , Female , Pregnancy , Humans , Male , Animals , Mice , Germ Cells , Steroids
5.
Front Cell Dev Biol ; 11: 1237273, 2023.
Article in English | MEDLINE | ID: mdl-37564373

ABSTRACT

Adult male fertility depends on spermatogonial stem cells (SSCs) which undergo either self-renewal or differentiation in response to microenvironmental signals. Activin A acts on Sertoli and Leydig cells to regulate key aspects of testis development and function throughout life, including steroid production. Recognising that activin A levels are elevated in many pathophysiological conditions, this study investigates effects of this growth factor on the niche that determines spermatogonial fate. Although activin A can promote differentiation of isolated spermatogonia in vitro, its impacts on SSC and spermatogonial function in vivo are unknown. To assess this, we examined testes of Inha KO mice, which feature elevated activin A levels and bioactivity, and develop gonadal stromal cell tumours as adults. The GFRA1+ SSC-enriched population was more abundant and proliferative in Inha KO compared to wildtype controls, suggesting that chronic elevation of activin A promotes a niche which supports SSC self-renewal. Intriguingly, clusters of GFRA1+/EOMES+/LIN28A- cells, resembling a primitive SSC subset, were frequently observed in tubules adjacent to tumour regions. Transcriptional analyses of Inha KO tumours, tubules adjacent to tumours, and tubules distant from tumour regions revealed disrupted gene expression in each KO group increased in parallel with tumour proximity. Modest transcriptional changes were documented in Inha KO tubules with complete spermatogenesis. Importantly, tumours displaying upregulation of activin responsive genes were also enriched for factors that promote SSC self-renewal, including Gdnf, Igf1, and Fgf2, indicating the tumours generate a supportive microenvironment for SSCs. Tumour cells featured some characteristics of adult Sertoli cells but lacked consistent SOX9 expression and exhibited an enhanced steroidogenic phenotype, which could arise from maintenance or acquisition of a fetal cell identity or acquisition of another somatic phenotype. Tumour regions were also heavily infiltrated with endothelial, peritubular myoid and immune cells, which may contribute to adjacent SSC support. Our data show for the first time that chronically elevated activin A affects SSC fate in vivo. The discovery that testis stromal tumours in the Inha KO mouse create a microenvironment that supports SSC self-renewal but not differentiation offers a strategy for identifying pathways that improve spermatogonial propagation in vitro.

7.
Cells ; 12(7)2023 03 24.
Article in English | MEDLINE | ID: mdl-37048077

ABSTRACT

Testicular germ cell tumours (TGCTs) are the most common malignancy in young men. Originating from foetal testicular germ cells that fail to differentiate correctly, TGCTs appear after puberty as germ cell neoplasia in situ cells that transform through unknown mechanisms into distinct seminoma and non-seminoma tumour types. A balance between activin and BMP signalling may influence TGCT emergence and progression, and we investigated this using human cell line models of seminoma (TCam-2) and non-seminoma (NT2/D1). Activin A- and BMP4-regulated transcripts measured at 6 h post-treatment by RNA-sequencing revealed fewer altered transcripts in TCam-2 cells but a greater responsiveness to activin A, while BMP4 altered more transcripts in NT2/D1 cells. Activin significantly elevated transcripts linked to pluripotency, cancer, TGF-ß, Notch, p53, and Hippo signalling in both lines, whereas BMP4 altered TGF-ß, pluripotency, Hippo and Wnt signalling components. Dose-dependent antagonism of BMP4 signalling by activin A in TCam-2 cells demonstrated signalling crosstalk between these two TGF-ß superfamily arms. Levels of the nuclear transport protein, IPO5, implicated in BMP4 and WNT signalling, are highly regulated in the foetal mouse germline. IPO5 knockdown in TCam-2 cells using siRNA blunted BMP4-induced transcript changes, indicating that IPO5 levels could determine TGF-ß signalling pathway outcomes in TGCTs.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Male , Humans , Animals , Mice , Testicular Neoplasms/metabolism , Active Transport, Cell Nucleus , Cell Line , Neoplasms, Germ Cell and Embryonal/genetics , Seminoma/genetics , Seminoma/metabolism , Activins/metabolism , Transforming Growth Factor beta/metabolism , Karyopherins/metabolism , beta Karyopherins/metabolism
8.
Elife ; 112022 12 14.
Article in English | MEDLINE | ID: mdl-36515584

ABSTRACT

The epididymis functions as transition zone for post-testicular sperm maturation and storage and faces contrasting immunological challenges, i.e. tolerance towards spermatozoa vs. reactivity against pathogens. Thus, normal organ function and integrity relies heavily on a tightly controlled immune balance. Previous studies described inflammation-associated tissue damage solely in the distal regions (corpus, cauda), but not in the proximal regions (initial segment, caput). To understand the observed region-specific immunity along the epididymal duct, we have used an acute bacterial epididymitis mouse model and analyzed the disease progression. Whole transcriptome analysis using RNAseq 10 days post infection showed a pro-inflammatory environment within the cauda, while the caput exhibited only minor transcriptional changes. High-dimensional flow cytometry analyses revealed drastic changes in the immune cell composition upon infection with uropathogenic Escherichia coli. A massive influx of neutrophils and monocytes was observed exclusively in distal regions and was associated with bacterial appearance and tissue alterations. In order to clarify the reasons for the region-specific differences in the intensity of immune responses, we investigated the heterogeneity of resident immune cell populations under physiological conditions by scRNASeq analysis of extravascular CD45+ cells. Twelve distinct immune cell subsets were identified, displaying substantial differences in distribution along the epididymis as further assessed by flow cytometry and immunofluorescence staining. Macrophages constituted the majority of resident immune cells and were further separated in distinct subgroups based on their transcriptional profile, tissue location and monocyte-dependence. Crucially, the proximal and distal regions showed striking differences in their immunological landscapes. These findings indicate that resident immune cells are strategically positioned along the epididymal duct, potentially providing different immunological environments required for addressing the contrasting immunological challenges and thus, preserving tissue integrity and organ function.


Subject(s)
Epididymis , Semen , Mice , Male , Animals , Sperm Maturation , Spermatozoa , Testis
9.
Cell Mol Life Sci ; 79(12): 602, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36434305

ABSTRACT

Experimental autoimmune-orchitis (EAO), a rodent model of chronic testicular inflammation and fibrosis, replicates pathogenic changes seen in some cases of human spermatogenic disturbances. During EAO, increased levels of pro-inflammatory and pro-fibrotic mediators such as TNF, CCL2, and activin A are accompanied by infiltration of leukocytes into the testicular parenchyma. Activin A levels correlate with EAO severity, while elevated CCL2 acting through its receptor CCR2 mediates leukocyte trafficking and recruits macrophages. CCR2 + CXCR4 + macrophages producing extracellular matrix proteins contribute widely to fibrogenesis. Furthermore, testicular macrophages (TMs) play a critical role in organ homeostasis. Therefore, we aimed to investigate the role of the activin A/CCL2-CCR2/macrophage axis in the development of testicular fibrosis. Following EAO induction, we observed lower levels of organ damage, collagen deposition, and leukocyte infiltration (including fibronectin+, collagen I+ and CXCR4+ TMs) in Ccr2-/- mice than in WT mice. Furthermore, levels of Il-10, Ccl2, and the activin A subunit Inhba mRNAs were lower in Ccr2-/- EAO testes. Notably, fibronectin+ TMs were also present in biopsies from patients with impaired spermatogenesis and fibrotic alterations. Overexpression of the activin A antagonist follistatin reduced tissue damage and collagen I+ TM accumulation in WT EAO testes, while treating macrophages with activin A in vitro increased the expression of Ccr2, Fn1, Cxcr4, and Mmp2 and enhanced migration along a CCL2 gradient; these effects were abolished by follistatin. Taken together, our data indicate that CCR2 and activin A promote fibrosis during testicular inflammation by regulating macrophage function. Inhibition of CCR2 or activin A protects against damage progression, offering a promising avenue for therapeutic intervention.


Subject(s)
Orchitis , Male , Humans , Mice , Animals , Follistatin , Fibronectins , Macrophages , Fibrosis , Inflammation , Receptors, CCR2/genetics
10.
Hum Reprod ; 37(11): 2497-2502, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36112046

ABSTRACT

Biomedical science is rapidly developing in terms of more transparency, openness and reproducibility of scientific publications. This is even more important for all studies that are based on results from basic semen examination. Recently two concordant documents have been published: the 6th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, and the International Standard ISO 23162:2021. With these tools, we propose that authors should be instructed to follow these laboratory methods in order to publish studies in peer-reviewed journals, preferable by using a checklist as suggested in an Appendix to this article.


Subject(s)
Semen Analysis , Semen , Humans , Reproducibility of Results , Semen Analysis/methods , Peer Review , Publishing
11.
Curr Opin Urol ; 32(5): 481-487, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35855571

ABSTRACT

PURPOSE OF REVIEW: Testicular germ cell tumours (TGCTs) are the most common solid malignant cancer diagnosed in young males and the incidence is increasing. Understanding the genetic basis of this disease will help us to navigate the challenges of early detection, diagnosis, treatment, surveillance, and long-term outcomes for patients. RECENT FINDINGS: TGCTs are highly heritable. Current understanding of germline risk includes the identification of one moderate-penetrance predisposition gene, checkpoint kinase 2 ( CHEK2 ), and 78 low-to-moderate-risk single nucleotide polymorphisms identified in genome-wide-associated studies, which account for 44% of familial risk. Biomarker research in TGCTs has been challenging for multiple reasons: oncogenesis is complex, actionable mutations are uncommon, clonal evolution unpredictable and tumours can be histologically and molecularly heterogeneous. Three somatic mutations have thus far been identified by DNA exome sequencing, exclusively in seminomas: KIT, KRAS and NRAS . Several genetic markers appear to be associated with risk of TGCT and treatment resistance. TP53 mutations appear to be associated with platinum resistance. MicroRNA expression may be a useful biomarker of residual disease and relapse in future. SUMMARY: The biology of testicular germ cells tumours is complex, and further research is needed to fully explain the high heritability of these cancers, as well as the molecular signatures which may drive their biological behaviour.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Humans , Male , Neoplasm Recurrence, Local , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/therapy , Seminoma/pathology , Testicular Neoplasms/diagnosis , Testicular Neoplasms/genetics , Testicular Neoplasms/therapy
12.
Histochem Cell Biol ; 158(4): 345-368, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35829816

ABSTRACT

Fetal testis growth involves cell influx and extensive remodeling. Immediately after sex determination in mouse, macrophages enable normal cord formation and removal of inappropriately positioned cells. This study provides new information about macrophages and other immune cells after cord formation in fetal testes, including their density, distribution, and close cellular contacts. C57BL6J mouse testes from embryonic day (E) 13.5 to birth (post-natal day 0; PND0), were examined using immunofluorescence, immunohistochemistry, and RT-qPCR to identify macrophages (F4/80, CD206, MHCII), T cells (CD3), granulocytes/neutrophils (Ly6G), and germ cells (DDX4). F4/80+ cells were the most abundant, comprising 90% of CD45+ cells at E13.5 and declining to 65% at PND0. Changes in size, shape, and markers (CD206 and MHCII) documented during this interval align with the understanding that F4/80+ cells have different origins during embryonic life. CD3+ cells and F4/80-/MHCII+ were absent to rare until PND0. Ly6G+ cells were scarce at E13.5 but increased robustly by PND0 to represent half of the CD45+ cells. These immunofluorescence data were in accord with transcript analysis, which showed that immune marker mRNAs increased with testis age. F4/80+ and Ly6G+ cells were frequently inside cords adjacent to germ cells at E13.5 and E15.5. F4/80+ cells were often in clusters next to other immune cells. Macrophages inside cords at E13.5 and E15.5 (F4/80Hi/CD206+) were different from macrophages at PND0 (F4/80Dim/CD206-), indicating that they have distinct origins. This histological quantification coupled with transcript information identifies new cellular interactions for immune cells in fetal testis morphogenesis, and highlights new avenues for studies of their functional significance.


Subject(s)
Macrophages , Testis , Animals , Fetal Development , Germ Cells , Male , Mice , Morphogenesis
13.
Front Endocrinol (Lausanne) ; 13: 898876, 2022.
Article in English | MEDLINE | ID: mdl-35685219

ABSTRACT

The long-standing knowledge that Sertoli cells determine fetal testosterone production levels is not widespread, despite being first reported over a decade ago in studies of mice. Hence any ongoing use of testosterone as a marker of Leydig cell function in fetal testes is inappropriate. By interrogating new scRNAseq data from human fetal testes, we demonstrate this situation is also likely to be true in humans. This has implications for understanding how disruptions to either or both Leydig and Sertoli cells during the in utero masculinization programming window may contribute to the increasing incidence of hypospadias, cryptorchidism, testicular germ cell tumours and adult infertility. We recently discovered that activin A levels directly govern androgen production in mouse Sertoli cells, because the enzymes that drive the conversion of the precursor androgen androstenedione to generate testosterone are produced exclusively in Sertoli cells in response to activin A. This minireview addresses the implications of this growing understanding of how in utero exposures affect fetal masculinization for future research on reproductive health, including during programming windows that may ultimately be relevant for organ development in males and females.


Subject(s)
Activins , Sertoli Cells , Testis , Androgens , Animals , Humans , Male , Mice , Testis/pathology , Testosterone
14.
Front Endocrinol (Lausanne) ; 13: 896747, 2022.
Article in English | MEDLINE | ID: mdl-35721752

ABSTRACT

Activin A, a TGFß superfamily member, is important for normal testis development through its actions on Sertoli cell development. Our analyses of altered activin A mouse models indicated gonocyte abnormalities, implicating activin A as a key determinant of early germline formation. Whether it acts directly or indirectly on germ cells is not understood. In humans, the fetal testis may be exposed to abnormally elevated activin A levels during preeclampsia, maternal infections, or following ingestion of certain medications. We hypothesized that this may impact fetal testis development and ultimately affect adult fertility. Germ cells from two mouse models of altered activin bioactivity were analysed. RNA-Seq of gonocytes purified from E13.5 and E15.5 Inhba KO mice (activin A subunit knockout) identified 46 and 44 differentially expressed genes (DEGs) respectively, and 45 in the E13.5 Inha KO (inhibin alpha subunit knockout; increased activin A) gonocytes. To discern direct effects of altered activin bioactivity on germline transcripts, isolated E13.5 gonocytes were cultured for 24h with activin A or with the activin/Nodal/TGFß inhibitor, SB431542. Gonocytes responded directly to altered signalling, with activin A promoting a more differentiated transcript profile (increased differentiation markers Dnmt3l, Nanos2 and Piwil4; decreased early germ cell markers Kit and Tdgf1), while SB431542 had a reciprocal effect (decreased Nanos2 and Piwil4; increased Kit). To delineate direct and indirect effects of activin A exposure on gonocytes, whole testes were cultured 48h with activin A or SB431542 and collected for histological and transcript analyses, or EdU added at the end of culture to measure germ and Sertoli cell proliferation using flow cytometry. Activin increased, and SB431542 decreased, Sertoli cell proliferation. SB431542-exposure resulted in germ cells escaping mitotic arrest. Analysis of FACS-isolated gonocytes following whole testis culture showed SB431542 increased the early germ cell marker Kit, however there was a general reduction in the impact of altered activin A bioavailability in the normal somatic cell environment. This multifaceted approach identifies a capacity for activin A to directly influence fetal germ cell development, highlighting the potential for altered activin A levels in utero to increase the risk of testicular pathologies that arise from impaired germline maturation.


Subject(s)
Activins , Germ Cells , Activins/metabolism , Animals , Argonaute Proteins , Germ Cells/metabolism , Male , Mice , RNA-Binding Proteins , Testis , Transforming Growth Factor beta
15.
J Reprod Immunol ; 151: 103618, 2022 06.
Article in English | MEDLINE | ID: mdl-35378491

ABSTRACT

The cytokine activin A is expressed throughout testicular development and is a critical regulator of macrophage function, but its effects on the testicular macrophages are not well-defined. Macrophage distribution and gene transcript levels were examined in testes of adult mice with reduced levels of either activin A (Inhba+/-), or its binding protein, follistatin (TghFST315). Macrophages were identified using F4/80 immunohistochemistry and enumerated by morphometry. Transcript levels were measured in testis extracts by qRT-PCR and Fluidigm ™ analyses. Interstitial macrophages were twice as numerous as peritubular macrophages in Inhba+/- and TghFST315 mice and their littermate controls. Macrophage numbers were significantly reduced in all regions of the Inhba+/- testis, and the volume density of peritubular and subcapsular macrophages was significantly reduced compared to littermate controls (by 52.9% and 36.3% respectively). Transcripts encoding macrophage chemokines, Csf1 and Ccl2, and receptor Csf1r, were elevated (by 35%, 44% and 27% respectively) in Inhba+/- testes, but Cx3cl1 and their receptors, Cx3cr1 and Ccr2, were not altered. Transcripts encoding MHC class II antigens and the co-stimulatory molecule Cd86, also increased (by 32% and 60% respectively), but other co-stimulatory molecules Cd80 and Cd274, and the scavenger receptor Mrc1 (CD206), were unaffected. In the follistatin-deficient testes, macrophage numbers and most macrophage-specific transcripts were not significantly affected, but Mrc1 expression was reduced by 35%. These data indicate that activin A maintains macrophage numbers, but selectively inhibits the levels of key transcripts associated with macrophage antigen-presentation, recruitment and differentiation in the adult mouse testis.


Subject(s)
Follistatin , Testis , Activins , Animals , Carrier Proteins/metabolism , Follistatin/genetics , Follistatin/metabolism , Humans , Macrophages/metabolism , Male , Mice
16.
Andrology ; 10(1): 190-201, 2022 01.
Article in English | MEDLINE | ID: mdl-34415685

ABSTRACT

BACKGROUND: Immunoregulatory genes encoding activin A (Inhba) and B (Inhbb), and indolamine 2,3-dioxygenase-1 (Ido1) are highly expressed in the murine caput epididymidis, which also has a network of intraepithelial mononuclear phagocytes. This environment is postulated to promote immunological tolerance to epididymal sperm. The factors regulating the immunoregulatory agents in the epididymal caput are poorly understood. OBJECTIVES: This study aimed to investigate the potential role of testicular lumicrine factors in regulating activin and other immune-related genes in the caput epididymidis. MATERIALS AND METHODS: The efferent ducts in adult C57/Bl6 mice were exposed and ligated bilaterally. Serum and tissues were collected seven days later. Animals with bilateral sham ligation and animals with no ligations (collectively referred to as the "intact" group) were used as controls. RESULTS: Pressure-induced seminiferous epithelial damage due to intratubular fluid accumulation was observed in all ligated testes. Testicular inhibin was significantly increased and testosterone was elevated in some animals following bilateral ligation, but serum testosterone, serum LH, and serum inhibin were normal. Ligation caused epithelial regression in the initial segment, with similar but less severe effects in other caput segments. Activin A staining by immunohistochemistry in the epithelium was reduced in bilateral ligation, particularly in the initial segment, with moderately reduced staining intensity in the rest of the caput. Inhba expression within the caput was not significantly affected by bilateral ligation, but Inhbb was reduced by more than 60%. Transcripts encoding the macrophage-specific receptor Cx3cr1 were significantly reduced following bilateral ligation, but other immune cell markers, Ido1, and inflammatory genes were unaffected. CONCLUSION: These data indicate that testicular lumicrine secretion regulates several genes that are preferentially expressed in the initial segment, but has marginal effects on genes such as those encoding activin A and IDO1, which are expressed more widely in the caput.


Subject(s)
Activins/immunology , Epididymis/immunology , Immune Tolerance/genetics , Inhibins/immunology , Testis/immunology , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal , Spermatozoa/immunology
17.
Semin Cell Dev Biol ; 121: 82-98, 2022 01.
Article in English | MEDLINE | ID: mdl-34426066

ABSTRACT

Regulated nucleocytoplasmic transport is central to the changes in gene expression that underpin cellular development and homeostasis, including in the testis, and proteins in the importin family are the predominant facilitators of cargo transport through the nuclear envelope. Reports documenting cell-specific profiles of importin transcripts and proteins during spermatogenesis led us to hypothesize that importins facilitate developmental switches in the testis. More recently, importins have been shown to serve additional functions, both inside and outside the nucleus; these include acting as subcellular scaffolding, mediating cellular stress responses, and controlling transcription. This paper seeks to provide an overview and update on the functions of importin proteins, with a focus on testis development and spermatogenesis. We present an extended survey of importins by combining published single cell RNAseq data with immunohistochemistry on developing and adult mouse testes. This approach reinforces and broadens knowledge of importins in biological processes, including in spermatogenesis and during testis development, revealing additional avenues for impactful investigations.


Subject(s)
Karyopherins/metabolism , Spermatogenesis/genetics , Animals , Fertility , Male , Mice
18.
Sci Transl Med ; 13(605)2021 08 04.
Article in English | MEDLINE | ID: mdl-34349036

ABSTRACT

Most patients with advanced solid cancers exhibit features of cachexia, a debilitating syndrome characterized by progressive loss of skeletal muscle mass and strength. Because the underlying mechanisms of this multifactorial syndrome are incompletely defined, effective therapeutics have yet to be developed. Here, we show that diminished bone morphogenetic protein (BMP) signaling is observed early in the onset of skeletal muscle wasting associated with cancer cachexia in mouse models and in patients with cancer. Cancer-mediated factors including Activin A and IL-6 trigger the expression of the BMP inhibitor Noggin in muscle, which blocks the actions of BMPs on muscle fibers and motor nerves, subsequently causing disruption of the neuromuscular junction (NMJ), denervation, and muscle wasting. Increasing BMP signaling in the muscles of tumor-bearing mice by gene delivery or pharmacological means can prevent muscle wasting and preserve measures of NMJ function. The data identify perturbed BMP signaling and denervation of muscle fibers as important pathogenic mechanisms of muscle wasting associated with tumor growth. Collectively, these findings present interventions that promote BMP-mediated signaling as an attractive strategy to counteract the loss of functional musculature in patients with cancer.


Subject(s)
Cachexia , Neoplasms , Animals , Denervation , Humans , Mice , Muscle, Skeletal/pathology , Muscular Atrophy , Neoplasms/complications , Neoplasms/pathology
19.
FASEB J ; 34(12): 16224-16242, 2020 12.
Article in English | MEDLINE | ID: mdl-33058343

ABSTRACT

Importin α proteins play a central role in the transport of cargo from the cytoplasm to the nucleus. In this study, we observed that male knock-out mice for importin α4, which is encoded by the Kpna4 gene (Kpna4-/- ), were subfertile and yielded smaller litter sizes than those of wild-type (WT) males. In contrast, mice lacking the closely related importin α3 (Kpna3-/- ) were fertile. In vitro fertilization and sperm motility assays demonstrated that sperm from Kpna4-/- mice had significantly reduced quality and motility. In addition, acrosome reaction was also impaired in Kpna4-/- mice. Transmission electron microscopy revealed striking defects, including abnormal head morphology and multiple axoneme structures in the flagella of Kpna4-/- mice. A five-fold increase in the frequency of abnormalities in Kpna4-/- mice compared to WT mice indicates the functional importance of importin α4 in normal sperm development. Moreover, Nesprin-2, which is a component of the linker of nucleus and cytoskeleton complex, was expressed at lower levels in sperm from Kpna4-/- mice and was localized with abnormal axonemes, suggesting incorrect formation of the nuclear membrane-cytoskeleton structure during spermiogenesis. Proteomics analysis of Kpna4-/- testis showed significantly altered expression of proteins related to sperm formation, which provided evidence that genetic loss of importin α4 perturbed chromatin status. Collectively, these findings indicate that importin α4 is critical for establishing normal sperm morphology in mice, providing new insights into male germ cell development by highlighting the requirement of importin α4 for normal fertility.


Subject(s)
Fertility/genetics , Infertility, Male/genetics , Karyopherins/genetics , Sperm Motility/genetics , Spermatozoa/abnormalities , alpha Karyopherins/genetics , Acrosome Reaction/genetics , Animals , Flagella/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Spermatogenesis/genetics , Testis/abnormalities
SELECTION OF CITATIONS
SEARCH DETAIL
...