Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Genom Bioinform ; 2(2): lqaa040, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33575593

ABSTRACT

Thanks to sequencing technology, modern molecular bioscience datasets are often compositions of counts, e.g. counts of amplicons, mRNAs, etc. While there is growing appreciation that compositional data need special analysis and interpretation, less well understood is the discrete nature of these count compositions (or, as we call them, lattice compositions) and the impact this has on statistical analysis, particularly log-ratio analysis (LRA) of pairwise association. While LRA methods are scale-invariant, count compositional data are not; consequently, the conclusions we draw from LRA of lattice compositions depend on the scale of counts involved. We know that additive variation affects the relative abundance of small counts more than large counts; here we show that additive (quantization) variation comes from the discrete nature of count data itself, as well as (biological) variation in the system under study and (technical) variation from measurement and analysis processes. Variation due to quantization is inevitable, but its impact on conclusions depends on the underlying scale and distribution of counts. We illustrate the different distributions of real molecular bioscience data from different experimental settings to show why it is vital to understand the distributional characteristics of count data before applying and drawing conclusions from compositional data analysis methods.

2.
PLoS One ; 9(4): e94346, 2014.
Article in English | MEDLINE | ID: mdl-24759838

ABSTRACT

Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity-past, present and future. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3 mm to 30 mm in length. ("Natural-colour" is used to contrast with "false-colour", i.e., colour generated from, or applied to, gray-scale data post-acquisition.) Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control.


Subject(s)
Insecta/classification , Software , Animals , Models, Theoretical
3.
Dev Comp Immunol ; 32(12): 1539-60, 2008.
Article in English | MEDLINE | ID: mdl-18621418

ABSTRACT

Amoebic gill disease (AGD) is a parasite-mediated proliferative gill disease capable of affecting a range of teleost hosts. While a moderate heritability for AGD resistance in Atlantic salmon has been reported previously, the mechanisms by which individuals resist the proliferative effects remain poorly understood. To gain more knowledge of this commercially important trait, we compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated putatively susceptible to AGD. Utilising a 17k Atlantic salmon cDNA microarray we identified 196 transcripts that were differentially expressed between the two groups. Expression of 11 transcripts were further examined with real-time quantitative RT-PCR (qPCR) in the AGD-resistant and AGD-susceptible animals, as well as non-infected naïve fish. Gene expression determined by qPCR was in strong agreement with the microarray analysis. A large number of differentially expressed genes were involved in immune and cell cycle responses. Resistant individuals displayed significantly higher expression of genes involved in adaptive immunity and negative regulation of the cell cycle. In contrast, AGD-susceptible individuals showed higher expression of acute phase proteins and positive regulators of the cell cycle. Combined with the gill histopathology, our results suggest AGD resistance is acquired rather than innately present, and that this resistance is for the most part associated with the dysregulation of immune and cell cycle pathways.


Subject(s)
Amebiasis/immunology , Cell Cycle/immunology , Fish Diseases/immunology , Gene Expression Profiling , Gills/immunology , Lobosea/immunology , Signal Transduction/immunology , Transcription, Genetic/immunology , Amebiasis/pathology , Animals , Disease Susceptibility/immunology , Female , Fish Diseases/parasitology , Fish Diseases/pathology , Gills/parasitology , Gills/pathology , Host-Parasite Interactions/immunology , Immunity, Innate/immunology , Lobosea/pathogenicity , Male , Salmo salar/immunology , Salmo salar/parasitology
4.
Mar Biotechnol (NY) ; 10(4): 388-403, 2008.
Article in English | MEDLINE | ID: mdl-18219527

ABSTRACT

The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (+/- SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response.


Subject(s)
Amoebida/physiology , Fish Diseases/genetics , Fish Diseases/parasitology , Gene Expression Regulation , Gills/parasitology , Protozoan Infections, Animal , Salmo salar/genetics , Salmo salar/parasitology , Animals , Gene Expression Profiling , Gills/metabolism , Gills/pathology , Kidney/metabolism , Liver/metabolism , Oligonucleotide Array Sequence Analysis , Protozoan Infections/genetics , Protozoan Infections/parasitology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...