Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 20(209): 20230374, 2023 12.
Article in English | MEDLINE | ID: mdl-38086402

ABSTRACT

A key challenge for public health policymakers is determining when an infectious disease outbreak has finished. Following a period without cases, an estimate of the probability that no further cases will occur in future (the end-of-outbreak probability) can be used to inform whether or not to declare an outbreak over. An existing quantitative approach (the Nishiura method), based on a branching process transmission model, allows the end-of-outbreak probability to be approximated from disease incidence time series, the offspring distribution and the serial interval distribution. Here, we show how the end-of-outbreak probability under the same transmission model can be calculated exactly if data describing who-infected-whom (the transmission tree) are also available (e.g. from contact tracing studies). In that scenario, our novel approach (the traced transmission method) is straightforward to use. We demonstrate this by applying the method to data from previous outbreaks of Ebola virus disease and Nipah virus infection. For both outbreaks, the traced transmission method would have determined that the outbreak was over earlier than the Nishiura method. This highlights that collection of contact tracing data and application of the traced transmission method may allow stringent control interventions to be relaxed quickly at the end of an outbreak, with only a limited risk of outbreak resurgence.


Subject(s)
Contact Tracing , Hemorrhagic Fever, Ebola , Humans , Contact Tracing/methods , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Public Health , Probability
2.
J Theor Biol ; 562: 111417, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36682408

ABSTRACT

Mathematical models are increasingly used throughout infectious disease outbreaks to guide control measures. In this review article, we focus on the initial stages of an outbreak, when a pathogen has just been observed in a new location (e.g., a town, region or country). We provide a beginner's guide to two methods for estimating the risk that introduced cases lead to sustained local transmission (i.e., the probability of a major outbreak), as opposed to the outbreak fading out with only a small number of cases. We discuss how these simple methods can be extended for epidemiological models with any level of complexity, facilitating their wider use, and describe how estimates of the probability of a major outbreak can be used to guide pathogen surveillance and control strategies. We also give an overview of previous applications of these approaches. This guide is intended to help quantitative researchers develop their own epidemiological models and use them to estimate the risks associated with pathogens arriving in new host populations. The development of these models is crucial for future outbreak preparedness. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Subject(s)
COVID-19 , Humans , Disease Outbreaks/prevention & control , Models, Theoretical , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...