Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cancers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672616

ABSTRACT

BACKGROUND: Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS: We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS: We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS: Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.

2.
J Appl Clin Med Phys ; 23(6): e13616, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35488728

ABSTRACT

PURPOSE: Increasing number of heavy cancer patients has created challenges in diagnostic imaging and radiation oncology. Practical weight limits of the equipment can become an obstacle both for imaging and treatment of these patients. Most magnetic resonance imaging and computed tomography (CT) tables' static load capacities are between 450 and 500 pounds, and linear accelerator tables can support similar weights depending on the type of the table and manufacturer. One recurring issue we encountered was failure of the treatment couch's longitudinal drive belt due to heavy patients' sudden movement. In several cases, snapping of the longitudinal drive belt occurred when the patient's weight was under 300 lbs (below the rated weight limit). Additionally, we observed vertical deflection of the couch when extended/cantilevered with heavy patients. The purpose of this work was to implement immobilization methods and safety devices for radiation treatment management of heavy patients in order to increase patient/provider safety, prevent treatment couch damage, and reduce treatment disruptions. MATERIALS AND METHODS: We created three safety devices for treatment management of heavy patients. Wooden brace and Scissor jack were used to lock the couch longitudinal axis (while the couch longitudinal drive was floated) during the setup of a heavy patient and absorb the mechanical impulse applied to the couch longitudinal drive belt. Wooden brace was built in house and positioned in between the wall and treatment couch to lock the longitudinal axis. Commercially available 10 in × 10 in scissor jack lift with adjustable height 3 ½ in - 13 in was modified to increase effectiveness and safety. An additional stand was created with adjustable height and rolling rubber wheels to support the couch when extended/cantilevered with heavy patients. RESULTS: Using these devices prevented the longitudinal belt from breaking and improved the patient/therapist safety at eight treatment sites within our network. No farther couch belt failures were observed since devices were introduced for clinical use. All three devices can be used and removed without any modifications done to the treatment couch.


Subject(s)
Particle Accelerators , Radiotherapy, Conformal , Humans , Movement , Protective Devices , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
3.
Front Oncol ; 12: 747825, 2022.
Article in English | MEDLINE | ID: mdl-35359395

ABSTRACT

Purpose: Commercial independent monitor unit (IMU) check systems for high-magnetic-field MR-guided radiation therapy (RT) systems are lacking. We investigated the feasibility of adopting an existing treatment planning system (TPS) as an IMU check for online adaptive radiotherapy using 1.5-Tesla MR-Linac. Methods: The 7-MV flattening filter free (FFF) beam and multi-leaf collimator (MLC) models of a 1.5-T Elekta Unity MR-Linac within Monte Carlo-based Monaco TPS were used to generate an optimized beam model in Eclipse TPS. The MLC dosimetric leaf gap of the beam in Eclipse was determined by matching the dose distribution of Eclipse-generated intensity-modulated radiation therapy (IMRT) plans using the Analytical Anisotropic Algorithm (AAA) algorithm to Monaco plans. The plans were automatically adjusted for different source-to-axis distances (SADs) between the two systems. For IMU check, the treatment plans developed in Monaco were transferred to Eclipse to recalculate the dose using AAA. A plug-in within Eclipse was created to perform a 2D gamma analysis of the AAA and Monte Carlo dose distribution on a beam's eye view parallel plane. Monaco dose distribution was shifted laterally by 2 mm during gamma analysis to account for the impact of magnetic field on electron trajectories. Eclipse doses for posterior beams were corrected for both the Unity couch and the posterior MR coil attenuation. Thirteen patients, each with 4-5 fractions for a variety of tumor sites (pancreas, rectum, and prostate), were tested. Results: After thorough commissioning, the method was implemented as part of the standard clinical workflow. A total of 62 online plans, each with approximately 15 beams, were evaluated. The average per-beam gamma (3%/3 mm) pass rate for plans was 97.9% (range, 95.9% to 98.8%). The average pass rate per beam for all 932 beams used in these plans was 97.9% ± 1.9%, with the lowest per-beam gamma pass rate at 88.4%. The time for the process was within 3.2 ± 0.9 min. Conclusion: The use of a second planning system provides an efficient way to perform IMU checks with clinically acceptable accuracy for online adaptive plans on Unity MR-Linac. This is essential for meeting the safety requirements for second checks as outlined in American Association of Physicists in Medicine Task Group (AAPM TG) reports 114 and 219.

4.
J Appl Clin Med Phys ; 23(2): e13503, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34914175

ABSTRACT

INTRODUCTION: To investigate the impact of partial lateral scatter (LS), backscatter (BS) and presence of air gaps on optically stimulated luminescence dosimeter (OSLD) measurements in an acrylic miniphantom used for dosimetry audit on the 1.5 T magnetic resonance-linear accelerator (MR-linac) system. METHODS: The following irradiation geometries were investigated using OSLDs, A26 MR/A12 MR ion chamber (IC), and Monaco Monte Carlo system: (a) IC/OSLD in an acrylic miniphantom (partial LS, partial BS), (b) IC/OSLD in a miniphantom placed on a solid water (SW) stack at a depth of 1.5 cm (partial LS, full BS), (c) IC/OSLD placed at a depth of 1.5 cm inside a 3 cm slab of SW/buildup (full LS, partial BS), and (d) IC/OSLD centered inside a 3 cm slab of SW/buildup at a depth of 1.5 cm placed on top of a SW stack (full LS, full BS). Average of two irradiated OSLDs with and without water was used at each setup. An air gap of 1 and 2 mm, mimicking presence of potential air gap around the OSLDs in the miniphantom geometry was also simulated. The calibration condition of the machine was 1 cGy/MU at SAD = 143.5 cm, d = 5 cm, G90, and 10 × 10 cm2 . RESULTS: The Monaco calculation (0.5% uncertainty and 1.0 mm voxel size) for the four setups at the measurement point were 108.2, 108.1, 109.4, and 110.0 cGy. The corresponding IC measurements were 109.0 ± 0.03, 109.5 ± 0.06, 110.2 ± 0.02, and 109.8 ± 0.03 cGy. Without water, OSLDs measurements were ∼10% higher than the expected. With added water to minimize air gaps, the measurements were significantly improved to within 2.2%. The dosimetric impacts of 1 and 2 mm air gaps were also verified with Monaco to be 13.3% and 27.9% higher, respectively, due to the electron return effect. CONCLUSIONS: A minimal amount of air around or within the OSLDs can cause measurement discrepancies of 10% or higher when placed in a high b-field MR-linac system. Care must be taken to eliminate the air from within and around the OSLD.


Subject(s)
Particle Accelerators , Radiometry , Calibration , Humans , Monte Carlo Method , Phantoms, Imaging
5.
J Appl Clin Med Phys ; 22(12): 87-96, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34708910

ABSTRACT

INTRODUCTION: Paraspinal stereotactic body radiotherapy (SBRT) involves risks of severe complications. We evaluated the safety of the paraspinal SBRT program in a large academic hospital by applying failure modes and effects analysis. METHODS: The analysis was conducted by a multidisciplinary committee (two therapists, one dosimetrist, four physicists, and two radiation oncologists). The paraspinal SBRT workflow was segmented into four phases (simulation, treatment planning, delivery, and machine quality assurance (QA)). Each phase was further divided into a sequence of sub-processes. Potential failure modes (PFM) were identified from each subprocess and scored in terms of the frequency of occurrence, severity and detectability, and a risk priority number (RPN). High-risk PFMs were identified based on RPN and were studied for root causes using fault tree analysis. RESULTS: Our paraspinal SBRT process was characterized by eight simulations, 11 treatment planning, nine delivery, and two machine QA sub-processes. There were 18, 29, 19, and eight PFMs identified from simulation, planning, treatment, and machine QA, respectively. The median RPN of the PFMs was 62.9 for simulation, 68.3 for planning, 52.9 for delivery, and 22.0 for machine QA. The three PFMs with the highest RPN were: previous radiotherapy outside the institution is not accurately evaluated (RPN: 293.3), incorrect registration between diagnostic magnetic resonance imaging and simulation computed tomography causing incorrect contours (273.0), and undetected patient movement before ExacTrac baseline (217.8). Remedies to the high RPN failures were implemented, including staff education, standardized magnetic resonance imaging acquisition parameters, and an image fusion process, and additional QA on beam steering. CONCLUSIONS: A paraspinal SBRT workflow in a large clinic was evaluated using a multidisciplinary and systematic risk analysis, which led to feasible solutions to key root causes. Treatment planning was a major source of PFMs that systematically affect the safety and quality of treatments. Accurate evaluation of external treatment records remains a challenge.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Radiosurgery , Humans , Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Risk Assessment
6.
Int J Med Phys Clin Eng Radiat Oncol ; 10(3): 119-131, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34395105

ABSTRACT

Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 workflow in such a network. All the sites in the network performed the annual reference dosimetry in water according to TG-51. These data were used to cross-calibrate the same ion chambers in plastic phantoms for monthly QA output measurements. An energy-specific dimensionless beam quality cross-calibration factor, k q n S W , was derived to monitor the process across multiple sites. The SPC analysis was then performed to obtain the mean, 〈 k q n S W 〉 , standard deviation, σ k , the Upper Control Limit (UCL) and Lower Control Limit (LCL) in each beam. This process was first applied to 15 years of historical data at the main campus to assess the effectiveness of the process. A two-year prospective study including all 30 linear accelerators spread over the main campus and seven satellites in the network followed. The ranges of the control limits (±3σ) were found to be in the range of 1.7% - 2.6% and 3.3% - 4.2% for the main campus and the satellite sites respectively. The wider range in the satellite sites was attributed to variations in the workflow. Standardization of workflow was also found to be effective in narrowing the control limits. The SPC is effective in identifying variations in the workflow and was shown to be an effective tool in managing large network reference dosimetry.

7.
J Appl Clin Med Phys ; 22(9): 183-188, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34278711

ABSTRACT

OBJECTIVE: Adaptive radiation therapy (ART) is an integral part of MR-guided RT (MRgRT), requiring a new RT plan for each treatment fraction and resulting in a significant increase in patient-specific quality assurance (PSQA). This study investigates the possibility of using treatment log-file for automated PSQA. METHOD: All treatment plans were delivered in 1.5T Unity MR-Linac (Elekta). A Unity compatible version of LinacView (Standard Imaging) was commissioned to automatically monitor and analyze the log-files. A total of 220 fields were delivered and measured by ArcCheck® -MR (Sun Nuclear) and LinacView. Thirty incorrectly matched fields were also delivered to check for error detection sensitivity. The gamma analysis, γ, with 3%, 3 mm criteria was used in both ArcCheck® -MR and LinacView. Additionally, the gantry angle, jaws, and multileaf collimators (MLC) positions reported in the log-file were compared with plan positions using TG-142 criteria. RESULT: The γ (3%, 3 mm) for the 190 plans were found to be between the range of 72.5%-100.0% and 95.4%-100.0% for ArcCheck® -MR and LinacVeiw, respectively. All the delivered gantry angle and jaws were found to be within 0.2° and 2 mm. MLCs that were outside the guard leaves or under the diaphragms were found to have more than 1.0 mm discrepancy. This was attributed to the linac internal override for these MLCs and had no dosimetric impact. Excluding these discrepancies, all MLC positions were found to be within 1.0 mm. The γ (3%, 3 mm) for the 30 incorrectly matched fields were found to be 3.9%-84.8% and 0.1%-64.4% for ArcCheck® -MR and LinacVeiw, respectively. CONCLUSION: Significant ranked correlation demonstrates the automated log-file analysis can be used for PSQA and expedite the ART workflow. Ongoing PSQA will be compared with log-file analysis to investigate the longer term reproducibility and correlation.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Particle Accelerators , Phantoms, Imaging , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results
8.
J Appl Clin Med Phys ; 22(5): 182-190, 2021 May.
Article in English | MEDLINE | ID: mdl-33779052

ABSTRACT

PURPOSE: This study aimed to evaluate and compare different system calibration methods from a large cohort of systems to establish a commissioning procedure for surface-guided frameless cranial stereotactic radiosurgery (SRS) with intrafractional motion monitoring and gating. Using optical surface imaging (OSI) to guide non-coplanar SRS treatments, the determination of OSI couch-angle dependency, baseline drift, and gated-delivered-dose equivalency are essential. METHODS: Eleven trained physicists evaluated 17 OSI systems at nine clinical centers within our institution. Three calibration methods were examined, including 1-level (2D), 2-level plate (3D) calibration for both surface image reconstruction and isocenter determination, and cube phantom calibration to assess OSI-megavoltage (MV) isocenter concordance. After each calibration, a couch-angle dependency error was measured as the maximum registration error within the couch rotation range. A head phantom was immobilized on the treatment couch and the isocenter was set in the middle of the brain, marked with the room lasers. An on-site reference image was acquired at couch zero, the facial region of interest (ROI) was defined, and static verification images were captured every 10° for 0°-90° and 360°-270°. The baseline drift was assessed with real-time monitoring of the motionless phantom over 20 min. The gated-delivered-dose equivalency was assessed using the electron portal imaging device and gamma test (1%/1mm) in reference to non-gated delivery. RESULTS: The maximum couch-angle dependency error occurs in longitudinal and lateral directions and is reduced significantly (P < 0.05) from 1-level (1.3 ± 0.4 mm) to 2-level (0.8 ± 0.3 mm) calibration. The MV cube calibration does not further reduce the couch-angle dependency error (0.8 ± 0.2 mm) on average. The baseline drift error plateaus at 0.3 ± 0.1 mm after 10 min. The gated-delivered-dose equivalency has a >98% gamma-test passing rate. CONCLUSION: A commissioning method is recommended using the 3D plate calibration, which is verified by radiation isocenter and validated with couch-angle dependency, baseline drift, and gated-delivered-dose equivalency tests. This method characterizes OSI uncertainties, ensuring motion-monitoring accuracy for SRS treatments.


Subject(s)
Radiosurgery , Humans , Patient Positioning , Phantoms, Imaging , Radiotherapy Dosage , Skull
9.
J Appl Clin Med Phys ; 22(3): 176-185, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33634952

ABSTRACT

The use of trajectory log files for routine patient quality assurance is gaining acceptance. Such use requires the validation of the trajectory log itself. However, the accurate localization of a multileaf collimator (MLC) leaf while it is in motion remains a challenging task. We propose an efficient phantom-less technique using the EPID to verify the dynamic MLC positions with high accuracy. Measurements were made on four Varian TrueBeams equipped with M120 MLCs. Two machines were equipped with the S1000 EPID; two were equipped with the S1200 EPID. All EPIDs were geometrically corrected prior to measurements. Dosimetry mode EPID measurements were captured by a frame grabber card directly linked to the linac. All leaf position measurements were corrected both temporally and geometrically. The readout latency of each panel, as a function of pixel row, was determined using a 40 × 1.0 cm2 sliding window (SW) field moving at 2.5 cm/s orthogonal to the row readout direction. The latency of each panel type was determined by averaging the results of two panels of the same type. Geometric correction was achieved by computing leaf positions with respect to the projected isocenter position as a function of gantry angle. This was determined by averaging the central axis position of fields at two collimator positions of 90° and 270°. The radiological to physical leaf end position was determined by comparison of the measured gap with that determined using a feeler gauge. The radiological to physical leaf position difference was found to be 0.1 mm. With geometric and latency correction, the proposed method was found to be improve the ability to detect dynamic MLC positions from 1.0 to 0.2 mm for all leaves. Latency and panel residual geometric error correction improve EPID-based MLC position measurement. These improvements provide for the first time a trajectory log QA procedure.


Subject(s)
Particle Accelerators , Radiotherapy, Intensity-Modulated , Humans , Phantoms, Imaging , Radiometry
10.
Med Phys ; 44(8): 3909-3922, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28564208

ABSTRACT

PURPOSE: An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time-efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time-resolved commissioning and QA of VMAT control systems which meets these criteria. METHODS: The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in-house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. RESULTS: The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry speed exhibited less profile stability. MLC positional accuracy was not observed to be dependent on the degree of interdigitation. MLC speed was measured for each individual leaf and slower leaf speeds were shown to be compensated for by lower dose rates. The test procedures were found to be sensitive to 1 mm systematic MLC errors, 1 mm random MLC errors, 0.4 mm MLC gap errors and synchronization errors between the MLC, dose rate and gantry angle controls systems of 1°. In general, parameters measured by both EPID and log files agreed with the plan, however, a greater average departure from the plan was evidenced by the EPID measurements. CONCLUSION: QA test plans and analysis methods have been developed to assess the performance of each dynamic component of VMAT deliveries individually and as a function of gantry angle. This methodology relies solely on time-resolved EPID imaging without the presence of a phantom and has been shown to be sensitive to a range of delivery errors. The procedures developed in this work are both comprehensive and time-efficient and can be used for streamlined commissioning and QA of VMAT delivery systems.


Subject(s)
Patient Positioning , Phantoms, Imaging , Radiotherapy, Intensity-Modulated , Electrical Equipment and Supplies , Humans , Software
11.
J Neurosurg Spine ; 20(4): 411-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24506099

ABSTRACT

OBJECT: Radiation therapy is known to impair wound healing. Higher dose per fraction is believed to increase this risk. This study sought to quantify rates of wound complication in patients receiving preoperative conventionally fractionated radiotherapy (XRT) or high-dose hypofractionated image-guided radiation therapy (IGRT) for spinal metastasis, and to identify predictors of wound complication. METHODS: The records of 165 consecutive patients who underwent spine surgery for metastasis at Memorial Sloan-Kettering Cancer Center between 1999 and 2010, with a history of prior radiation therapy, were reviewed. Patients with primary spine tumors, 2 courses of prior radiation therapy to the surgical site, total dose < 9 Gy, or radiation therapy adjacent to or partially overlapping the surgical site, were excluded. One hundred thirty patients received XRT (≤ 3 Gy/fraction) and 35 received IGRT (> 3 Gy/fraction). The total dose prescribed to the 100% isodose line to treat the planning target volume was 18-30 Gy in 1-5 fractions. Clinical factors evaluated included age, Karnofsky Performance Scale score, body mass index, presence of diabetes, smoking, ambulatory status, prior surgery at same spinal site, preoperative laboratory results (hemoglobin, lymphocyte count, and albumin), perioperative chemotherapy or steroids, estimated blood loss, extent of stabilization hardware, time between radiation therapy and surgery, number of vertebral bodies irradiated, total radiation dose, and dose per fraction of radiation therapy. Wound complication was defined as poor healing, dehiscence, or infection. Potential predictors of wound complication were assessed by univariate analyses using competing-risk methods to adjust for risk of death. results: For XRT patients, median dose was 30 Gy (range 11.5-70 Gy) with 72% of them receiving 3 Gy × 10 fractions. For IGRT patients, 66% received 18-24 Gy × 1 fraction and 23% received 6 Gy × 5 fractions. Groups differed only by the mean number of vertebral bodies treated (4.6 XRT and 1.8 IGRT, p < 0.0001). Wound complications occurred at a median of 0.95 months (range 0.4-3.9 months). A total of 22 wound events occurred in the XRT group and 2 in the IGRT group. The 6-month cumulative incidence of wound complications for XRT was 17% and for IGRT was 6%. There was no significant difference in wound complications between groups (IGRT vs XRT: hazard ratio 0.31, 95% CI 0.08-1.3; p = 0.11). Higher dose per fraction appeared to be associated with a lower risk of wound complication (hazard ratio 0.27, 95% CI 0.06-1.15; p = 0.08), which trended toward significance. Univariate analyses did not reveal any significant predictors of wound complications. CONCLUSIONS: Patients who underwent XRT or IGRT did not have significantly different rates of postoperative wound complications. This finding may be explained by the treatment of fewer vertebral bodies in IGRT patients, or by the low overall number of total events. With a wound complication rate of 6%, preoperative IGRT, a highly conformal treatment, resulted in a very low rate of surgical wound complication.


Subject(s)
Radiotherapy, Image-Guided/adverse effects , Spinal Neoplasms/surgery , Surgical Wound Infection/etiology , Adult , Aged , Aged, 80 and over , Combined Modality Therapy/adverse effects , Female , Humans , Male , Middle Aged , Radiotherapy Dosage , Retrospective Studies , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary
12.
J Xray Sci Technol ; 19(3): 321-32, 2011.
Article in English | MEDLINE | ID: mdl-21876282

ABSTRACT

PURPOSE: To investigate image artifacts caused by a standard treatment couch on cone-beam CT (CBCT) images from a kV on-board imager and to develop an algorithm based on spatial domain filtering to remove image artifacts in CBCT induced by the treatment couch. METHODS: Image artifacts in CBCT induced by the treatment couch were quantified by scanning a phantom used to quantify CT image performance. This was performed by scanning the phantom setup on a regular treatment couch and in air with the kV on-board imager. An algorithm was developed to filter image artifacts from the treatment couch by processing of cone-beam radiographic projections using two scans: one scan of the phantom and treatment couch and a second scan of the treatment couch only. This algorithm is based on a pixel-by-pixel removal of beam attenuation due to the treatment couch from each projection of the phantom and couch scan. The net couch-filtered projections were then used to reconstruct CBCT. RESULTS: We found that the treatment couch causes considerable image artifacts: CT number uniformity is degraded and varies as much as 15%, and noise in CBCT scans with phantom plus couch (3.5%) is higher than for the phantom in air (1.5%). The spatial domain filtering technique reduces noise by more than 1.5%, improves uniformity by a factor of 2, and removes ringing and streaking artifacts related to the standard treatment couch in CBCT reconstructed from couch-filtered projections. This filtering technique was tested successfully to filter other hardware objects such as a patient immobilization body-fix frame. CONCLUSIONS: The standard treatment couch causes image artifact in CBCT from kV on-board imaging systems. The spatial domain filtering technique developed in this work improves image quality of CBCT by preprocessing the projections prior to CBCT reconstruction. This technique might be useful to filter other hardware objects from CBCT which may contribute to the degradation of image quality.


Subject(s)
Algorithms , Artifacts , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Humans , Phantoms, Imaging
13.
J Neurosurg Spine ; 13(1): 87-93, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20594023

ABSTRACT

OBJECT Adjuvant radiation following epidural spinal cord decompression for tumor is a powerful tool used to achieve local disease control and preserve neurological function. To the authors' knowledge, only 1 published report addresses adjuvant stereotactic radiosurgery after this procedure, but that study used significantly lower doses than are currently prescribed. The authors review their experience using high-dose single-fraction radiosurgery as a postoperative adjuvant following surgical decompression and instrumentation to assess long-term local tumor control, morbidity, and survival. METHODS A retrospective chart review identified 21 patients treated with surgical decompression and instrumentation for high-grade, epidural, spinal cord compression from tumor, followed by single-fraction high-dose spinal radiosurgery (dose range 18-24 Gy, median 24 Gy). Spinal cord dose was limited to a cord maximal dose of 14 Gy. Tumor histologies, time between surgery and radiosurgery, time to local recurrence after radiosurgery as assessed by serial MR imaging, and time to death were determined. Competing risk analysis was used to evaluate these end points. RESULTS In this series, 20 tumors treated (95%) were considered highly radioresistant to conventional external beam radiation. The planning target volume received a high dose (24 Gy) in 16 patients (76.2%), and a low dose (18 or 21 Gy) in 5 patients (23.8%). During the study, 15 (72%) of 21 patients died, and in all cases death was due to systemic progression as opposed to local failure. The median overall survival after radiosurgery was 310 days (range 37 days to not reached). One patient (4.8%) underwent repeat surgery for local failure and 2 patients (9.5%) underwent spine surgery for other reasons. Local control was maintained after radiosurgery in 17 (81%) of 21 patients until death or most recent follow-up, with an estimated 1-year local failure risk of 9.5%. Of the failures, 3 of 4 were noted in patients receiving low-dose radiosurgery, equaling an overall failure rate of 60% (3 of 5 patients) and a 1-year local failure estimated risk of 20%. Those patients receiving adjuvant stereotactic radiosurgery with a high dose had a 93.8% overall local control rate (15 of 16 patients), with a 1-year estimated failure risk of 6.3%. Competing risk analysis showed this to be a significant difference between radiosurgical doses. One patient experienced a significant radiation-related complication; there were no wound-related issues after radiosurgery. CONCLUSIONS Spine radiosurgery after surgical decompression and instrumentation for tumor is a safe and effective technique that can achieve local tumor control until death in the vast majority of patients. In this series, those patients who received a higher radiosurgical dose had a significantly better local control rate.


Subject(s)
Radiosurgery/methods , Spinal Neoplasms/secondary , Spinal Neoplasms/surgery , Adult , Aged , Decompression, Surgical , Female , Humans , Male , Middle Aged , Postoperative Complications , Radiotherapy Dosage , Radiotherapy, Adjuvant , Retrospective Studies , Spinal Cord Compression/etiology , Stereotaxic Techniques , Survival Rate , Treatment Failure , Treatment Outcome
14.
J Appl Clin Med Phys ; 12(1): 3270, 2010 Oct 27.
Article in English | MEDLINE | ID: mdl-21330971

ABSTRACT

Our goal is to determine an optimized image-guided setup by comparing setup errors determined by two-dimensional (2D) and three-dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D-2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D-3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D-2D registration led to translational corrections from initial setup of 3.5 ± 2.2 (range 0-8) mm. The addition of 3D-3D registration resulted in only small incremental adjustment (0.8 ± 1.5 mm). We retrospectively calculated patient setup rotation errors using an automatic rigid-body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in-field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations > 3° were observed. The calculated intrafractional motion with automatic registration was < 3.5 mm for eight patients, and < 2° for all patients. We conclude that daily manual 2D-2D registration on radiographs reduces positioning errors for mask-immobilized HNC patients in most cases, and is easily implemented. 3D-3D registration adds little improvement over 2D-2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Imaging, Three-Dimensional/methods , Patient Positioning , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Pattern Recognition, Automated/methods , Reproducibility of Results , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...