Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Clin Exp Res ; 44(1): 56-65, 2020 01.
Article in English | MEDLINE | ID: mdl-31742718

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorders (FASD) collectively refer to all deleterious outcomes due to prenatal alcohol exposures. Alterations to the face are common phenotypes in FASD. While alcohol exposure is the underlying cause of FASD, many variables modify the outcomes of such exposures. Genetic risk is one such variable, yet we still have a limited understanding of the nature of the genetic loci mediating susceptibility to FASD. METHODS: We employed ENU-based random mutagenesis in zebrafish to identify mutations that enhanced the teratogenicity of ethanol (EtOH). F3 embryos obtained from 126 inbred F2 families were exposed to 1% EtOH in the medium (approximately 41 mM tissue levels). Zebrafish stained with Alcian Blue and Alizarin Red were screened for qualitative alterations to the craniofacial skeleton between 4 and 7 days postfertilization (dpf). RESULTS: In all, we recovered 6 EtOH-sensitive mutants, 5 from the genetic screen itself and one as a background mutation in one of our wild-type lines. Each mutant has a unique EtOH-induced phenotype relative to the other mutant lines. All but 1 mutation appears to be recessive in nature, and only 1 mutant, au29, has apparent craniofacial defects in the absence of EtOH. To validate the genetic screen, we genetically mapped au29 and found that it carries a mutation in a previously uncharacterized gene, si:dkey-88l16.3. CONCLUSIONS: The phenotypes of these EtOH-sensitive mutants differ from those in previous characterizations of gene-EtOH interactions. Thus, each mutant is likely to provide novel insights into EtOH teratogenesis. Given that most of these mutants only have craniofacial defects in the presence of EtOH and our mapping of au29, it is also likely that many of the mutants will be previously uncharacterized. Collectively, our findings point to the importance of unbiased genetic screens in the identification, and eventual characterization, of risk alleles for FASD.


Subject(s)
Disease Models, Animal , Ethanol/toxicity , Fetal Alcohol Spectrum Disorders/genetics , Genetic Testing/methods , Mutation/drug effects , Mutation/genetics , Animals , Craniofacial Abnormalities/chemically induced , Craniofacial Abnormalities/genetics , Female , Fetal Alcohol Spectrum Disorders/pathology , Genetic Predisposition to Disease/genetics , Pregnancy , Zebrafish
2.
Zebrafish ; 13(5): 391-8, 2016 10.
Article in English | MEDLINE | ID: mdl-27186793

ABSTRACT

Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.


Subject(s)
Disease Models, Animal , Ethanol/toxicity , Fetal Alcohol Spectrum Disorders/etiology , Teratogenesis , Zebrafish , Animals , Embryo, Nonmammalian/drug effects , Fetal Alcohol Spectrum Disorders/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...